SELF-SIMILAR SINGULAR SOLUTION OF A P-LAPLACIAN EVOLUTION EQUATION WITH GRADIENT ABSORPTION TERM*

Shi Peihu
(Department of Mathematics, Southeast University, Nanjing 210096, China)
(E-mail: sph2106@yahoo.com.cn)
(Received Feb. 23, 2004)

Abstract In this paper we deal with the self-similar singular solution of the p-Laplacian evolution equation \(u_t = \text{div}(\|\nabla u\|^{p-2}\nabla u) - |\nabla u|^q \) for \(p > 2 \) and \(q > 1 \) in \(\mathbb{R}^n \times (0, \infty) \). We prove that when \(p > q + n/(n+1) \) there exist self-similar singular solutions, while \(p \leq q + n/(n+1) \) there is no any self-similar singular solution. In case of existence, the self-similar singular solutions are the self-similar very singular solutions, which have compact support. Moreover, the interface relation is obtained.

Key Words p-Laplacian evolution equation; gradient absorption; self-similar; singular solution; very singular solution.

2000 MR Subject Classification 35K15, 35K65
Chinese Library Classification O175.26.

1. Introduction and Main Results

In this paper we consider the self-similar singular solution of the p-Laplacian evolution equation with nonlinear gradient absorption term

\[u_t = \text{div}(\|\nabla u\|^{p-2}\nabla u) - |\nabla u|^q \text{ in } \mathbb{R}^n \times (0, \infty), \tag{1.1} \]

where \(p > 2 \) and \(q > 1 \). Here by singular solution we mean a nonnegative and nontrivial solution \(u(x, t) \), which is continuous in \(\mathbb{R}^n \times [0, \infty) \) \(\setminus \{0, 0\} \) and satisfies

\[\lim_{t \to 0} \sup_{|x| > \varepsilon} u(x, t) = 0, \quad \forall \ \varepsilon > 0. \tag{1.2} \]

A singular solution \(u(x, t) \) is called a very singular solution provided that it satisfies

\[\lim_{t \to 0} \int_{|x| < \varepsilon} u(x, t) \, dx = \infty, \quad \forall \ \varepsilon > 0. \tag{1.3} \]

*This work was supported by PRC Grant NSFC 19831060 and the “333” project of Jiangsu province.
By self-similar solution we mean that the solution \(u(x, t) \) has the following form
\[
 u(x, t) = \left(\frac{\alpha}{t} \right)^\alpha f(|x| \left(\frac{\alpha}{t} \right)^{\alpha \beta}), \quad \alpha = \frac{p - q}{2q - p}, \quad \beta = \frac{q + 1 - p}{p - q}.
\] (1.4)

To guarantee the constants \(\alpha \) and \(\beta \) are positive, here we consider the following case
\[
 2q > p > q, \quad q + 1 - p > 0.
\] (1.5)

Consequently, the self-similar singular solution to (1.1), if it exists, satisfies the following ODE boundary problem
\[
 \begin{cases}
 (|f'|^{p-2}f')' + \frac{n-1}{r} |f'|^{p-2}f' + \beta r f' + f - |f'|^q = 0, \\
 f(0) = a > 0, \quad \lim_{r \to \infty} r^{1/\beta} f(r) = 0,
 \end{cases}
\] (1.6)

where \(f = f(r) \) is the function of self-similar variable \(r = |x| \left(\frac{\alpha}{t} \right)^{\alpha \beta} \), the prime denotes the differentiation with respect to \(r \).

In this paper we set
\[
 \nu = p + (p - 2)/\beta = q + (q - 1)/\beta > 2.
\]

Singular solutions were first discovered for the semilinear heat equation
\[
 u_t = \Delta u - u^p.
\] (1.7)

Brezis and Friedman [1] in 1983 proved that (1.7) admits a unique singular solution for every \(c \in (0, \infty) \) when \(1 < p < 1 + 2/n \) such that \(\lim_{t \to 0} \int_{|x|<\varepsilon} u(x, t) dx = c, \quad \forall \varepsilon > 0 \), which is called a fundamental solution with initial mass \(c \), while it has no such solutions for \(p \geq 1 + 2/n \). Shortly, Brezis, Peletier and Terman [2] had proved that (1.7) possesses a unique very singular solution when \(1 < p < 1 + 2/n \). Since that time many authors studied the self-similar singular solutions (see [3-8] and the references therein) of the following equations
\[
 \begin{align*}
 &u_t = \Delta (u^m) - u^p, \quad 0 < m < \infty, \quad p > 1, \\
 &u_t = \Delta (u^m) - |\nabla u|^p, \quad 1 \leq m < \infty, \quad p > 1, \\
 &u_t = \text{div}(|\nabla u^m|^{p-2}\nabla u^m) - u^q, \quad 0 < m < \infty, \quad p > 1, \quad q > 1.
 \end{align*}
\]

In addition, large time behavior of solutions to the Cauchy problems of the above equations with absorption \(u^p \) (or \(u^q \)) can be characterized by their very singular, self-similar solutions and fundamental solutions, see [9-14].

To study the boundary value problem (1.6), we consider the initial problem
\[
 \begin{cases}
 (|f'|^{p-2}f')' + \frac{n-1}{r} |f'|^{p-2}f' + \beta r f' + f - |f'|^q = 0, \quad r > 0, \\
 f(0) = a > 0, \quad f'(0) = 0.
 \end{cases}
\] (1.8)

Let \(f(r; a) \) be the solution of (1.8) and \((0, R(a)) \) be the maximal existence interval, where \(f(r; a) > 0 \). Our main results read as follows: