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Abstract In this paper, we consider the Cauchy problem for some dispersive
equations. By means of nonlinear estimate in Besov spaces and fixed point theory, we
prove the global well-posedness of the above problem. What’s more, we improve the
scattering result obtained in [1].
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1. Introduction and Main Results

We consider the well-posedness and scattering theory to the Cauchy problem for
nonlinear dispersive equation as in [1]

{
Mut + ux + f(u)x = 0,

u(0) = ϕ(x),
(1.1)

or more generally, of its multi-dimensional case
{

Mut + (b,∇)u + (∇, ~f(u)) = 0,

u(0) = ϕ(x),
(1.2)

where ~f(u) ∈ C1(Rn,R) satisfies

~f(0) = 0, |~f(u)| ≤ C|u|p+1, 0 < p < ∞. (1.3)

and M is a pseudo-differential operator with

M̂u(ξ) = m(ξ)û(ξ), (1.4)

and the symbol m(ξ) satisfies the following assumption:
(H1) m(ξ) ∈ C(Rn,R+), and there exist positive constants C1, C2 such that

0 < C1(1 + |ξ|)µ ≤ m(ξ) ≤ C2(1 + |ξ|)µ, µ > 1.
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In special, for M = I − ∂2
x, (1.1) coincides with BBM equation

ut + ux − uxxt + f(u)x = 0, (1.5)

which is originated from the wave equation

ut + ux = 0, (1.6)

by introducing dispersive effect uxxt and adding nonlinear term f(u), but when it comes
to uxxx, we get generalized KdV equation

ut + ux + uxxx + f(u)x = 0. (1.7)

Both kinds of equations in arbitrary space dimensions have been extensively studied
by many authors [2 - 6]. Their main results can be stated as the following:

For any bounded smooth domain Ω and max(1, n
2 ) < p < ∞, there is a unique

global strong solution for the Initial-Boundary-Value problem of GBBM equation (1.2)
in W2,p(Ω); for any unbounded smooth domain Ω or Ω = Rn,max(1, n

2 ) < p < n, there
exist a unique global strong solution for the IBV problem or Cauchy problem. The
paper [7] established the existence and uniqueness of global strong solution for the IBV
problem and Cauchy problem of inhomogeneous GBBM equation in W2,p(Ω) in the
case of max(1, n

2 ) < p < ∞
In this paper, we pay our attention to (1.1) and (1.2) and our main results can be

expressed as follows:
Theorem 1.1 (1) If f(u) satisfies (1.3) and m(ξ) satisies (H1) for n = 1, then

(1.1) or its associated integral equation

u(t) = S(t)ϕ−
∫ t

0
S(t− τ)M−1∂xf(u(τ))dτ, (1.8)

has a strong solution u(t) ∈ C(R;H
µ
2 ), where

S(t)ϕ = e−tM−1∂xϕ = F−1e
−t iξ

m(ξ)Fϕ. (1.9)

(2) If ϕ ∈ Hs for µ
2 < s < p + µ− 1

2 , then we have u(t) ∈ C(R;Hs).

Theorem 1.2 (1) If ~f(u) satisfies (1.3) and m(ξ) satisfies (H1) for n ≥ 2,
then(1.2) or its associated integral equation

u(t) = S(t)ϕ−
∫ t

0
S(t− τ)M−1(∇, f(u(τ)))dτ (1.10)

has a strong solution u(t) ∈ C(R;H
µ
2 ) if either of the following holds:

(i) 0 < p <
2
n
,

np + 2
p + 2

< µ <
np + 2

2
;


