ON THE INITIAL VALUE PROBLEM FOR THE BIPOLAR SCHRÖDINGER-POISSON SYSTEM

Hao Chengchun

(Academy of Mathematics and Systems Science, CAS, Beijing, 100080, Graduate School of the Chinese Academy of Sciences, Beijing 100039, China) (E-mail: hcc@mail.amss.ac.cn)

Li Hailiang^{*}

(Institute of Mathematics, University of Vienna, Boltzmanngasse 9, A-1090 Vienna, Austria) (E-mail: lihl@math.sci.osaka-u.ac.jp) (Received Feb. 16, 2004)

Abstract In this paper, we prove the existence and uniqueness of global solutions in $H^s(\mathbb{R}^3)$ ($s \in \mathbb{R}, s \ge 0$) for the initial value problem of the bipolar Schrödinger-Poisson systems.

Key Words Schrödinger-Poisson system; Strichartz' estimates; initial value problem; H^s -solution.

2000 MR Subject Classification 35Q55. **Chinese Library Classification** 0175.28.

1. Introduction

In the present paper, we study the global existence and uniqueness of solutions for the initial value problem to the (pure state) bipolar Schrödinger-Poisson systems

$$i\partial_t \psi = -\Delta \psi + V\psi, \tag{1.1a}$$

$$i\partial_t \phi = -\Delta \phi - V\phi, \qquad (1.1b)$$

$$-\Delta V = |\psi|^2 - |\phi|^2,$$
(1.1c)

$$\psi(0,x) = \psi_0, \ \phi(0,x) = \phi_0,$$
 (1.1d)

where $\psi = \psi(t, x)$ and $\phi = \phi(t, x) : \mathbb{R}^{1+3} \to \mathbb{C}$, Δ is the Laplacian operator on \mathbb{R}^3 , and the electrostatic potential $V = V(\psi, \phi)$ is a real function. This system appears in

^{*}Current address: Department of pure and applied mathematics, Graduate school of information science and technology, Osaka University, Toyonaka, Osaka 560–0043, Japan.

quantum mechanics, semi-conductor and plasma physics. A large amount of interesting works has been devoted to the study for the Schrödinger-Poisson systems (see [1-4] and references therein). In [3], Castella proved the global existence and uniqueness of solutions in $H^m (m \in \mathbb{Z}, m \ge 0)$ for the mixed-state unipolar Schrödinger-Poisson systems. And in [4], Jüngel and Wang discussed the combined semi-classical and quasineutral limit in the bipolar defocusing nonlinear Schrödinger-Poisson system in the whole space.

First, we introduce some notations. For any $p \in [2, \infty)$, we denote $\frac{1}{\gamma(p)} = \frac{3}{2}(\frac{1}{2} - \frac{1}{p})$. S(t) denotes the unitary group generated by $i\Delta$ in $L^2(\mathbb{R}^3)$. For $p \in [1, \infty]$, we denote by p' the conjugate exponent of p, defined by 1/p + 1/p' = 1. \bar{z} denotes the conjugate of the complex number z. H_p^s or \dot{H}_p^s (resp. $B_{p,2}^s$ or $\dot{B}_{p,2}^s$) denotes the inhomogeneous or homogeneous Sobolev (Besov) space respectively.

Now we state the main result of this paper as follows. **Theorem 1.1** Let $s \in \mathbb{R}$, $s \ge 0$. Let $a \in [2, \frac{18}{7}]$. Assume that $\psi_0, \phi_0 \in H^s(\mathbb{R}^3)$. Then, there exists a unique solution of the IVP (1.1) such that (ψ, ϕ)

$$\psi, \phi \in \mathcal{C}(\mathbb{R}; H^s(\mathbb{R}^3)) \cap L^{\gamma(a)}_{loc}(\mathbb{R}; B^s_{a,2}(\mathbb{R}^3)).$$
(1.2)

Moreover, when s is an integer, the result in (1.2) also holds with the Besov space $B_{a,2}^s$ replaced by H_a^s .

Remark The result that we prove here for the single bipolar Schrödinger-Poisson system can be extended to the mixed-state bipolar Schrödinger-Poisson system within the same framework.

2. Global Existence

By (1.1c), we have the potential

$$V(t,x) = \frac{1}{4\pi} \cdot \frac{1}{r} * (|\psi|^2 - |\phi|^2), \qquad (2.1)$$

where r := |x|. Now we recall the lemma needed to estimate $V(\psi, \phi)\psi$ and $V(\psi, \phi)\phi$.

Lemma 2.1([5, Lemma 1.1]) Let $0 \leq s < \infty$, $1 \leq r' < \infty$. Assume that $l_k, m_k, p_k, q_k > 0$ satisfy

$$\frac{1}{r'} = \frac{1}{l_k} + \frac{1}{m_k} = \frac{1}{p_k} + \frac{1}{q_k}, \quad k = 0, 1, \dots, [s].$$
(2.2)

Then there exists a constant C > 0 dependent only on r', n, s such that

$$\|uv\|_{\dot{B}^{s}_{r',2}} \leqslant C \sum_{k=0}^{[s]} (\|u\|_{\dot{H}^{k}_{p_{k}}} \|v\|_{\dot{B}^{s-k}_{q_{k},2}} + \|u\|_{\dot{B}^{s-k}_{l_{k},2}} \|v\|_{\dot{H}^{k}_{m_{k}}}),$$
(2.3)