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Abstract In this paper, we prove the existence and uniqueness of global solutions
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1. Introduction

In the present paper, we study the global existence and uniqueness of solutions for the
initial value problem to the (pure state) bipolar Schrödinger-Poisson systems

i∂tψ = −∆ψ + V ψ, (1.1a)

i∂tφ = −∆φ− V φ, (1.1b)

−∆V = |ψ|2 − |φ|2, (1.1c)

ψ(0, x) = ψ0, φ(0, x) = φ0, (1.1d)

where ψ = ψ(t, x) and φ = φ(t, x) : R1+3 → C, ∆ is the Laplacian operator on R3,
and the electrostatic potential V = V (ψ, φ) is a real function. This system appears in
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quantum mechanics, semi-conductor and plasma physics. A large amount of interesting
works has been devoted to the study for the Schrödinger-Poisson systems (see [1-4] and
references therein). In [3], Castella proved the global existence and uniqueness of solu-
tions in Hm(m ∈ Z, m > 0) for the mixed-state unipolar Schrödinger-Poisson systems.
And in [4], Jüngel and Wang discussed the combined semi-classical and quasineutral
limit in the bipolar defocusing nonlinear Schrödinger-Poisson system in the whole space.

First, we introduce some notations. For any p ∈ [2,∞), we denote
1

γ(p)
=

3
2
(
1
2
− 1

p
).

S(t) denotes the unitary group generated by i∆ in L2(R3). For p ∈ [1,∞], we denote
by p′ the conjugate exponent of p, defined by 1/p + 1/p′ = 1. z̄ denotes the conjugate
of the complex number z. Hs

p or Ḣs
p (resp. Bs

p,2 or Ḃs
p,2) denotes the inhomogeneous

or homogeneous Sobolev (Besov) space respectively.
Now we state the main result of this paper as follows.

Theorem 1.1 Let s ∈ R, s > 0. Let a ∈ [2,
18
7

]. Assume that ψ0, φ0 ∈ Hs(R3).
Then, there exists a unique solution of the IVP (1.1) such that (ψ, φ)

ψ, φ ∈ C(R;Hs(R3)) ∩ L
γ(a)
loc (R;Bs

a,2(R3)). (1.2)

Moreover, when s is an integer, the result in (1.2) also holds with the Besov space Bs
a,2

replaced by Hs
a.

Remark The result that we prove here for the single bipolar Schrödinger-Poisson
system can be extended to the mixed-state bipolar Schrödinger-Poisson system within
the same framework.

2. Global Existence

By (1.1c), we have the potential

V (t, x) =
1
4π

· 1
r
∗ (|ψ|2 − |φ|2), (2.1)

where r := |x|. Now we recall the lemma needed to estimate V (ψ, φ)ψ and V (ψ, φ)φ.
Lemma 2.1([5, Lemma 1.1]) Let 0 6 s < ∞, 1 6 r′ < ∞. Assume that

lk,mk, pk, qk > 0 satisfy

1
r′

=
1
lk

+
1

mk
=

1
pk

+
1
qk

, k = 0, 1, ..., [s]. (2.2)

Then there exists a constant C > 0 dependent only on r′, n, s such that

‖uv‖Ḃs
r′,2

6 C

[s]∑

k=0

(‖u‖Ḣk
pk

‖v‖Ḃs−k
qk,2

+ ‖u‖Ḃs−k
lk,2
‖v‖Ḣk

mk

), (2.3)


