GLOBAL ATTRACTORS OF REACTION-DIFFUSION SYSTEMS AND THEIR HOMOGENIZATION*

Zhang Xingyou and Hu Xiaohong

(College of Math. and Physics, Chongqing University, 400030, China) (E-mail: zhangxy@cqu.edu.cn; xiaohongcq@hotmail.com) (Received Jun. 12, 2003)

Abstract In this paper, we study the existence of the global attractor $\mathcal{A}^{\varepsilon}$ of reaction-diffusion equation

$$\partial_t u^{\varepsilon}(x,t) = A_{\varepsilon} u^{\varepsilon}(x,t) - f(x,\varepsilon^{-1}x,u^{\varepsilon}(x,t)),$$

and the homogenized attractor \mathcal{A}^0 of the corresponding homogenized equation, then give explicit estimates for the distance between the attractor \mathcal{A}^ε and the homogenized attractor \mathcal{A}^0 .

Key Words Homogenization; global attractor; reaction-diffusion systems; almostperiodic function; Diophantine conditions.

2000 MR Subject Classification 35B40, 35K57. **Chinese Library Classification** 0175.25, 0175.29.

1. Introduction and Main Results

We consider the reaction-diffusion system

$$\begin{cases} \partial_t u^{\varepsilon}(x,t) = A_{\varepsilon} u^{\varepsilon}(x,t) - f(x,\varepsilon^{-1}x,u^{\varepsilon}(x,t)), & (x,t) \in \Omega \times \mathbf{R}^+, \\ u^{\varepsilon}(x,t)|_{\partial\Omega} = 0, \quad u^{\varepsilon}(x,t)|_{t=0} = u_0, \end{cases}$$
(1.1)

where Ω is a bounded domain in \mathbf{R}^3 and $0 < \varepsilon \leq \varepsilon_0 < 1$. Here $u^{\varepsilon} = u^{\varepsilon}(x,t) = (u^1_{\varepsilon}, \dots, u^k_{\varepsilon})$ is an unknown vector-valued function. The second order elliptic differential operators A_{ε} have the form as follows:

$$A_{\varepsilon}u := \operatorname{diag}(A_{\varepsilon}^{1}u^{1}, \cdots, A_{\varepsilon}^{k}u^{k}), \qquad (1.2)$$

with

$$A^l_{\varepsilon}u^l = \sum_{i,j=1}^3 \partial_{x_i}(a^l_{ij}(\varepsilon^{-1}x)\partial_{x_j}u^l(x)), \qquad (1.3)$$

^{*}This work was supported by the Returned Overseas Chinese Scholars Foundations of Educational Ministry and The Key Teachers' Foundations of Chongqing University.

where the functions $a_{ij}^l(y)$, $l = 1, \dots, k$, $y \in \mathbf{R}^3$, are assumed to be symmetric, smooth and **Y**-periodic with respect to $y \in \mathbf{R}^3$, where $\mathbf{Y} \subset \mathbf{R}^3$ is a fixed cube. The uniform ellipticity condition

$$\sum_{i,j=1}^{3} a_{ij}^{l}(y)\zeta_{i}\zeta_{j} \ge \nu |\zeta|^{2}, \quad \forall y, \zeta \in \mathbf{R}^{3},$$
(1.4)

81

is also assumed (with an appropriate $\nu > 0$) to be valid for operators A_{ε}^{l} . We impose that f(x, y, u) is almost-periodic ([1]) with respect to $y \in \mathbb{R}^{3}$ and satisfies the conditions as follows:

$$f \in C^1(\mathbf{R}^k, \mathbf{R}^k), \quad \partial_z f(x, y, z)\zeta\zeta \ge -C_2\zeta\zeta, \quad \forall \zeta \in \mathbf{R}^k,$$
(1.5)

$$|f(x, y, u)| \le C(1+|u|^p), \quad \forall (x, y) \in \Omega \times \mathbf{R}^3,$$
(1.6)

$$\sum_{l=1}^{k} f^{l} u^{l} |u^{l}|^{p_{l}} \ge C \sum_{l=1}^{k} |u^{l}|^{p_{l}+2} - C_{1}, \quad \forall u \in \mathbf{R}^{k},$$
(1.7)

where $p \ge 1, p_i \ge 2(p-1)$, $i = 1, \dots, k$. It is assumed also that the initial data $u_0 \in (L^2(\Omega))^k$.

Efendiev and Zelik (see [2]) studied the problem (1.1) when f(x, y, u) is independent of y. Fiedler and Vishik (see [3]) studied the case when the $A_{\varepsilon}u$ in (1.1) is replaced by $a\Delta u$. In fact, one can obtain the existence of solutions and attractors for (1.1) with f(x, y, u) depending on y by the standard method as those in [4]. However, when estimate the distance between the attractors for (1.1) and the attractors of the homogenized equation, the arguments in [2] or [3] don't work. We have to overcome these difficulties by combining the ideas in [3], [2] and analyzing carefully the properties of periodic and almost-periodic functions.

In order to simplify our expression, we denote $H = (L^2(\Omega))^k$, $V = (W_0^{1,2}(\Omega))^k$, $F = (L^{\infty}(\Omega))^k$, $\|\cdot\|_{(W^{l,p}(\Omega))^k} = \|\cdot\|_{l,p}$.

Theorem 1.1 If the assumptions (1.2) - (1.7) hold, and the initial data $u_0 \in H$, then for any T > 0, $\varepsilon > 0$, the problem (1.1) possesses a unique solution $u^{\varepsilon}(x,t) \in L^{\infty}([0,T];H) \cap L^2([0,T];V)$, $u^{\varepsilon} \in C(R^+;H)$. The mapping $S_t^{\varepsilon} \colon u_0 \longrightarrow u^{\varepsilon}(x,t)$ defines a continuous semigroup $S_t^{\varepsilon} \colon H \longrightarrow H$. If, furthermore, $u_0 \in V$, then $u^{\varepsilon}(x,t) \in L^{\infty}([0,T];V) \cap L^2([0,T];W^{2,2}(\Omega))$, $u^{\varepsilon} \in C(R^+;V)$.

Theorem 1.2 If the assumptions (1.2) - (1.7) hold, and $u_0 \in H$, then for every $\varepsilon > 0$, the semigroup S_t^{ε} generated by the equation (1.1) possesses a global compact attractor $\mathcal{A}^{\varepsilon}$ in H.

Theorem 1.1 can be proved by the Faedo-Galerkin method with the help of R.Temam [4], and the details of the proof are omitted. Similar arguments as in [4] for the problem (1.1) yield the a prior estimates needed about $u^{\varepsilon}(x,t)$ in H and V, and we omit the details. Then Theorem 1.2, whose proof is also omitted, can be easily proved by the standard arguments [4, Theorem 1.1.1].

By the standard homogenization theory, one can obtain the homogenized problem (2.11), for which one can prove the similar results to Theorems 1.1 and 1.2. In order to

No.1