EXISTENCE OF PERIODIC SOLUTIONS FOR 3-D COMPLEX GINZBERG-LANDAU EQUATION

Li Donglong (Guangxi University of Technology, Liuzou 545006, China) (E-mail: lidl@21cn.com) Guo Boling (Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100088, China) (E-mail: gbl@mail.iapem.ac.cn) (Received Nov. 18, 2002; revised Sep. 1, 2003)

Abstract In this paper, the authors consider complex Ginzburg-Landau equation (CGL) in three spatial dimensions

$$u_t = \rho u + (1 + i\gamma)\Delta u - (1 + i\mu) |u|^{2\sigma} u + f,$$

where u is an unknown complex-value function defined in 3+1 dimensional space-time R^{3+1} , Δ is a Laplacian in R^3 , $\rho > 0$, γ , μ are real parameters, $\Omega \in R^3$ is a bounded domain. By using the method of Galërkin and Faedo-Schauder fix point theorem we prove the existence of approximate solution u_N of the problem. By establishing the uniform boundedness of the norm $||u_N||$ and the standard compactness arguments, the convergence of the approximate solutions is considered. Moreover, the existence of the periodic solution is obtained.

Key Words complex Ginzburg-Landau equation; Galërkin method; approximate solution; time periodic solution.

2000 MR Subject Classification 35B30, 35B45, 35K55. **Chinese Library Classification** 0175.29.

1. Introduction

The generalized complex Ginzburg-Landau (CGL) equation describes the evolution of a complex-valued u = u(x, t) by

$$u_t = \rho u + (1 + i\gamma)\Delta u - (1 + i\mu) |u|^{2\sigma} u$$
.

It has a long history in physics as a generic amplitude equation near the onset of instabilities that lead to chaotic dynamics in fluid mechanical systems, as well as in the theory of phase transitions and superconductivity. It is a particularity interesting model because it is a dissipative version of the nonlinear Schrödinger equation—A Hamiltonian equation which can possess solutions that form localized singularities in finite time.

Ghidaglia and Héorn [1], Doering et al [2], Promislow [3], etc. studied the finite dimensional Global attractor and related dynamic issues for the one or two spatial dimensional GLE with cubic nonlinearity ($\sigma = 1$):

$$u_t - (1 + i\gamma)\Delta u + (1 + i\mu) |u|^2 u - \rho u = 0.$$

where $i = \sqrt{-1}$, a > 0. and γ , μ are given real numbers. Bartuccelli, Constantin, Doering, Gibbon and Gisselfalt [4] deal with the "soft" and "hard" turbulent behavior for this equation. In [5], Bu considered the global existence of the Cauchy problem of the following 2D GLE:

$$u_t - (\nu + i\alpha)\Delta u + (\mu + i\beta) |u|^{2q} u - \gamma u = 0$$

with q = 1 and q = 2, $\alpha\beta > 0$, or $|\beta| \le \frac{\sqrt{5}}{2}$. Doering, Gibbon and Levermore [6] investigated weak and strong solutions for this equation. Mielke [7] discussed the solution of this equation in weighted L^p space and derived some new bounds and investigated some properties of attractors. We consider the equation with non-homogeneous term in three spatial dimensions as follows

$$u_t = \rho u + (1 + i\gamma)\Delta u - (1 + i\mu) |u|^{2\sigma} u + f(x, t), \qquad (1.1)$$

$$u(0,x) = u_0(x), \qquad x \in \Omega \tag{1.2}$$

with periodic boundary condition

$$\Omega = (0, L) \times (0, L) \times (0, L), \quad u \text{ is } \Omega - \text{periodic}, \tag{1.3}$$

where u is an unknown complex-value function defined in 3+1dimensional space-time R^{3+1} , Δ is a Laplacian in R^3 , $\rho > 0$, γ, μ are real parameters, the function f(x, t) is ω -periodic in time t.

Here, by using the Galerkin method and Leray-Schauder fixed point theorem, we will show the existence of approximate solution $u_N(t)$ of the problem (1.1) - (1.3). We establish the uniform boundedness of the norm $||u_N(t)||$, by standard compactness arguments get convergence of the approximate solution, and obtain the existence of the time periodic solution for the problem (1.1) - (1.3).

Our assumptions on σ, γ, μ are (A):

(i) By choosing suitable γ ,

$$\sigma \leq \min\left\{\frac{\sqrt{1+\gamma^2}}{\sqrt{1+\gamma^2}-1}-1,\frac{1}{4}\frac{\sqrt{1+\gamma^2}}{\sqrt{1+\gamma^2}-1}\right\};$$