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Abstract The one-dimensional transient quantum Euler-Poisson system for semi-
conductors is studied in a bounded interval. The quantum correction can be interpreted
as a dispersive regularization of the classical hydrodynamic equations and mechanical
effects.

The existence and uniqueness of local-in-time solutions are proved with lower regu-
larity and without the restriction on the smallness of velocity, where the pressure-density
is general (can be non-convex or non-monotone).
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1. Introduction

In 1927, Madelung gave a fluid-dynamical description of quantum systems governed
by the Schrödinger equation for the wave function ψ:

iε∂tψ = −ε
2

2
∆ψ − V ψ in Rd × (0,∞),

ψ(·, 0) = ψ0 in Rd,

where d > 1 is the space dimension, ε > 0 denotes the scaled Planck constant, and
V = V (x, t) is some (given) potential. By separating the amplitude and phase of ψ =
|ψ| exp(iS/ε), the particle density ρ = |ψ|2 and the particle current density j = ρ∇S
for irrotational flow satisfy the so-called Madelung equations [1]

∂tρ+ divj = 0, (1.1)

∂tj + div
(
j ⊗ j

ρ

)
− ρ∇φ− ε2

2
ρ∇

(
∆
√
ρ

ρ

)
= 0 in Rd × (0,∞). (1.2)
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The equations (1.1)-(1.2) can be interpreted as the pressureless Euler equations includ-
ing the quantum Bohm potential

ε2

2
∆
√
ρ

ρ
. (1.3)

They have been used for the modelling of superfluids like Helium II [2, 3].
Recently, Madelung-type equations have been derived to model quantum phenom-

ena in semiconductor devices, like resonant tunnelling diodes, starting from the Wigner-
Boltzmann equation [4] or from a mixed-state Schrödinger-Poisson system [5, 6]. There
are several advantages to the fluid-dynamical description of quantum semiconductors.
First, kinetic equations, like the Wigner equation, or Schrödinger systems are computa-
tionally very expensive, whereas for Euler-type equations efficient numerical algorithms
are available [7, 8]. Second, the macroscopic description allows for a coupling of classical
and quantum models. Indeed, setting the Planck constant ε in (1.2) equal to zero, we
obtain the classical pressureless equations. So in both pictures, the same (macroscopic
) variables can be used. Finally, as semiconductor devices are modelled in bounded do-
mains, it is easier to find physically relevant boundary conditions for the macroscopic
variables than for the Wigner function or for the wave function.

The Madelung-type equations derived by Gardner [4] and Gasser et al. [5] also
include a pressure term and a momentum relaxation term taking into account of in-
teractions of the electrons with the semiconductor crystal, and are self-consistently
coupled to the Poisson equation for the electrostatic potential φ:

∂tρ+ divj = 0, (1.4)

∂tj + div
(
j ⊗ j

ρ

)
+∇P (ρ)− ρ∇φ− ε2

2
ρ∇

(
∆
√
ρ

ρ

)
= − j

τ
, (1.5)

λ2∆φ = ρ− C(x) in Ω× (0,∞), (1.6)

where Ω ⊂ Rd is a bounded domain, τ > 0 is the (scaled) momentum relaxation time
constant, λ > 0 the (scaled) Debye length, and C(x) is the doping profile modelling the
semiconductor device under consideration [9, 10]. The pressure is assumed to depend
only on the particle density and, like in classical fluid dynamics, often to have the
expression

P (ρ) =
T0

γ
ργ , ρ > 0, γ > 1, (1.7)

with the temperature constant T0 > 0 employed [4, 11]. Isothermal fluids correspond to
γ = 1, isentropic fluids to γ > 1. Notice that the particle temperature is T (ρ) = T0ρ

γ−1.
The equations (1.4)-(1.6) are referred to as the quantum Euler-Poisson system or

the quantum hydrodynamic model.
In this paper, we investigate the local existence of solutions of the following one-

dimensional quantum Euler-Poisson problem:

ρt + (ρu)x = 0, (1.8)


