EXISTENCE AND UNIQUENESS OF THE CAUCHY PROBLEM FOR A GENERALIZED NAVIER-STOKES EQUATIONS

Liu Xiaofeng (The Institute of Mathematics, Fudan University, Shanghai, China, 200433) (E-mail: lxfn7381@hotmail.com) (Received Nov. 8, 2002)

Abstract We consider the Cauchy problem for a generalized Navier-Stokes equations with hyperdissipation, with the initial data in L^p_{σ} . We follow the theme of [1] but with more complicated analysis on the symbol and obtain the existence and uniqueness results.

Key Words Cauchy problem; generalized Navier-Stokes equations; hyperdissipation; mild solution.

2000 MR Subject Classification 35Q30, 35A05, 35A07, 76D03, 76D05. **Chinese Library Classification** 0175.29, 0175.8.

1. Introduction

We consider the Generalized Navier-Stokes equations in whole space:

$$\begin{cases} \partial_t u + (-\Delta)^d u + (u \cdot \nabla) u + \nabla p = 0, & (x,t) \in \mathbf{R}^n \times [0,T), \\ \operatorname{div} u = 0, & (x,t) \in \mathbf{R}^n \times [0,T), \\ u|_{t=0} = a \in L^p_{\sigma}, \end{cases}$$
(1)

where d is a positive real number, $n \geq 2$, and $(-\Delta)^d$ is defined by $|\xi|^{2d} \hat{f}(\xi) = ((-\Delta)^d f)(\xi)$. When d = 1, (1) is the normal Navier-Stokes equations and has been studied by many authors. When n = 2 and $d \geq 1$, (1) was studied by S. Tourville ([2]) and was referred as the Navier-Stokes equations with hyperdissipation. [2] also explained the derivation of the equations on the numerical aspects. See [3], [4], [5] and [6] for more detail. In this paper we follow the theme of [1] and give the existence and uniqueness of (1) for d > 1/2. The basic idea is the following. One firstly transforms (1) into mild integral equations, then gives a bilinear estimates, finally by the common iterative arguments, obtains the results. The key to this paper is Theorem 2.2. When d is any positive integer, it is easy to prove Theorem 2.2, because in the case, $\hat{\Omega}(\xi) = e^{-t|\xi|^{2d}} \in S$, the Schwartz class, so does $\Omega(x)$ and decreases rapidly in infinity. But when d is not an integer, $\hat{\Omega}(\xi) \notin S$, neither Ω , then we cannot conclude directly

that Ω decreases in a given order we need in infinity, so we need some more complicated analysis to obtain Theorem 2.2. Our results contain the results listed in [1]

This paper is organized in the following way. In Section 2, we will give some notations and basic but important propositions. Section 3 contains a bilinear estimate. Finally, in Section 4, we give the main theorems on the existence and uniqueness of (1) without proofs.

2. Preliminary

Now we give some notations and conventions. Let

$$C_{0,\sigma}^{\infty}(\mathbf{R}^n) = \{f(x) \in C_0^{\infty}(\mathbf{R}^n) : \operatorname{div} f = 0\},\$$

and $\|\cdot\|_p$ be the norm of $L^p(\mathbf{R}^n)$, $1 \le p \le \infty$. Let L^p_{σ} be the completion of $C^{\infty}_{0,\sigma}(\mathbf{R}^n)$ in L^p . Let I be an interval in \mathbf{R}^+ and $L^q(I, L^p(\mathbf{R}^n))$ be the Lebesgue space with mixed norm

$$||f||_{L^{q}(I,L^{p}(\mathbf{R}^{n}))} = \sum_{j=1}^{n} \left(\int \left(\int |f_{j}(x,t)|^{p} dx \right)^{q/p} dt \right)^{1/q} < \infty.$$

For simplicity we denote the norm of $L^q(I, L^p(\mathbf{R}^n))$ by $\|\cdot\|_{p,q,I}$, $\|\cdot\|_{p,q,T}$ for I = [0, T), and $\|\cdot\|_{p,q}$ for $I = \mathbf{R}^+$ and let $L^{p,q}(S_T) = L^q((0,T); L^p(\mathbf{R}^n))$. Let $\alpha = (\alpha_{1,\dots,\alpha_n})$ be a multiindex, $\partial^{\alpha} f = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n} f$, $\partial^{(k)} f$ be any $\partial^{\alpha} f$ with $|\alpha| = k$, $\xi^{\alpha} = \xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n}$, $\xi^{(k)}$ be any ξ^{α} with $|\alpha| = k$. Let $P_{a,k}$ be any expression with the form

$$\sum_{j=0}^{k} c_{(j)} \xi^{(j)} \left|\xi\right|^{a-k-j},\tag{2}$$

where $c_{(j)}$ is a real number, a, k are integers and $k \ge 0$, the expression may be taken differently from line to line. It is easy to verify the following basic Lemma.

Lemma 2.1 By the definition of $P_{a,k}$, we have

$$\partial^{(1)}P_{a,k} = P_{a,k+1},\tag{3}$$

$$P_{a,k}(\xi) |\xi|^{-2} \xi^{(1)} = P_{a,k+1}(\xi), \tag{4}$$

$$P_{a,k} + P_{a,k} = P_{a,k},\tag{5}$$

$$P_{a,k} \times P_{b,l} = P_{a+b,k+l}.\tag{6}$$

Remark 2.1 In Lemma 2.1, we mean that "=" holds in these equalities if there exist $P_{a,k}$, $P_{b,l}$ and $P_{a,k+1}$ and so on with the form (2). Also in this paper we always have the following convention. If an expression with $P_{a,k}$ holds, we mean that there is some $P_{a,k}$ with the form of (2) such that the expression holds.