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Abstract We consider a backward parabolic problem arising in the description of
the behavior of the toroidal part of the magenetic field in a dynamo problem. In our
backward time problem, the media parameters are spatial distributed and the boundary
conditions are of the Robin type. For this ill-posed problem, we prove that the solution
depends continuously on the initial-time geometry.
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1. Introduction

Let Ω = (0, 1). Consider the following backward parabolic problem:

∂u(x, t)
∂t

= − ∂

∂x

(
a(x)

∂u

∂x

)
+

∂

∂x
(b(x)u), (x, t)∈ Ω× (0, T )

−a(0)ux(0, t) + hu(0, t) = 0, t ∈ (0, T )

a(1)ux(1, t) +Hu(1, t) = 0, t ∈ (0, T )

u(x, 0) = u0(x) x ∈ Ω,

(1.1)

where h,H are known nonnegative constants. In this paper, we always assume that
the smooth coefficients a(x) and b(x) satisfy

a(x) ≥ a0 > 0, x ∈ Ω, (1.2)

a(x), |a′(x)|, |b(x)|, |b′(x)|, |b′′(x)| ≤M0, x ∈ Ω (1.3)

b(0) = b(1) = 0, b′(0), b′(1) ≤ 0 (1.4)

*This work is supported by China Postdoctoral Science Foundation (No.2002031224) and Southeast

University Science Foundation (No.3007011043).



212 Liu Jijun Vol.16

for two known positive constants a0,M0. In practice, the function a(x) is the magnetic
resistivity and physically a(x) and a′(x) are bounded. Furthermore, the velocity field
u(x, t) is described by (1.1), as is usual in the kinematic dynamo problem and thus,
we may impose the bounds on b(x) and its derivatives. So, (1.3) is not restrictive. As
for (1.2), it guarantees that our problem is backward in time. (1.4) is assumed due
to the technique reasons. In the cases a(x) = 1 and b(x) = 0, (1.2),(1.3) and (1.4)
are satisfied automatically. Such a kind of problem appears not only in the kinematic
dynamo problem, but also in the heat conduction problem([1],[2]).

It is well-known that (1.1) is ill-posed. Firstly, unlike the forward problem, (1.1) is
not always solvable for any initial function u0(x). Secondly, even if there exists unique
solution for some u0(x), the solution does not depend continuously on the initial data.
Relatively speaking, the research on the ill-posedness caused by instability is much
important from the practical point of view. That is, the initial data are given by
measurements in practice which implies they are unavoidably polluted by some errors.
In this case, it is important to know if the errors in the initial data have a pronounced
effect on the solution.

If the initial data are given at the instant time t = 0 with some error level date
δ > 0, that is, we are given initial data û0(x) at t = 0 satisfying

‖u0 − û0‖ ≤ δ, (1.5)

then we should estimate the error u(x, t)−v(x, t) by u0(x)− û0(x), where v(x, t) solves
(1.1) with u0(x) = û0(x). There has been a long history for the researches on this
topic. By the logarithmic convexity method, it is well-known that the stability for the
solution in t ∈ (0, T ) can be restored if we give some a-priori bound to the solution at
the final time t = T . In the case a(x) = 1 and b(x) = 0, such a result may be found in
[3] for a backward problem with the Dirichilet boundary condition. In recent years, it
is found that the conditional stability can be applied to treat the ill-posed problem by
the regularization method([4],[5]).

However, there is another kind of error in the initial data in practice. That is,
although the physical process is govern by (1.1), instead of giving the initial data û0(x)
at the same instant of time t = 0, we are given the initial data over a perturbation
curve t = εf(x) for small ε > 0, where f(x) satisfies

|f ′(x)| ≤ F0, 0 ≤ f(x) ≤ 1, f(0) = f(1) = 0. (1.6)

In this case, although v(x, t) satisfies

∂v(x, t)
∂t

= − ∂

∂x

(
a(x)

∂v

∂x

)
+

∂

∂x
(b(x)v), (x, t) ∈ Ω× (0, T )

−a(0)vx(0, t) + hv(0, t) = 0, t ∈ (0, T )

a(1)vx(1, t) +Hv(1, t) = 0, t ∈ (0, T )

v(x, 0) = û0(x), x ∈ Ω,

(1.7)


