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1. Introduction

This paper concerns the following Cauchy problem for the nonlinear Schröinger
equations:


∂u

∂t
= i

{
f(x, t)∆u + p∇f(x, t) · ∇u + k(x, t)|u|2u

}
, x ∈ M, t ≥ 0,

u(x, 0) = u0(x),
(1)

where M is either Rm or Tm (the flat m-dimensional torus), i =
√
−1, ∇ denotes the

gradient, ∆ is the Laplace-Beltrami operator on M , p is a fixed real constant, f and k
are appropriately smooth real-valued functions on M × [0,∞) and u ∈ Cn.

We note that when f(x, t) ≡ 1 and k(x, t) ≡ constant, (1) is just the ordinary (ho-
mogeneous) cubic nonlinear Schrödinger equation, which has been extensively studied,
see [1, 2, 3] and references therein. When the functions f, k are independent of variable
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t (inhomogeneous), we have the following conservation laws which are not available yet
for non-autonomous case:∫

M
|u(t)|2fp−1dM ≡

∫
M
|u0|2fp−1dM,

E(u(t)) ≡ E(u0), ∀t ∈ [0, T ),

where u(t) ∈ H1(M) (0 ≤ t < T ) is any solution to (1) and

E(u) =
1
2

∫
M
|∇u|2fpdM − 1

4

∫
M
|∇u|2fp−1kdM.

The authors review their recent results ([4]) on the existence of the solutions to the
Cauchy problem (1) in non-autonomous case. So, the references of this paper are not
intended to be complete. The reader is referred to those cited in our paper for further
references.

Throughout this paper we will use the following notations: As usual, let W s,q(M)
(0 ≤ s < ∞, 1 ≤ q ≤ ∞) denote Sobolev spaces, Hs(M) = W s,2(M), H∞(M) =
∩∞s=0H

s(M), and [λ] the integral part of the positive number λ. ‖ · ‖L2 ,‖ · ‖Hs denote
the usual norms on L2(M) and Hs(M) respectively.

2. Existence and Uniqueness

To make simplicity, we may assume k(x, t) ≡ 1. The results can be generalized with
no difficulty to general case by posting suitable conditions on k. We will be referring
to the following assumptions:

(A1) There exists a positive function L(t) ∈ C(R) such that

inf
x∈M

|f(x, t)| ≥ L(t), for all x ∈ M, 0 ≤ t < ∞;

(A2) f is C1 with respect to t and there exists a positive function U(t) ∈ C(R)
such that

‖∂tf(·, t)‖L∞ ≤ U(t), for all 0 ≤ t < ∞;

(A3) (p− 1)∂tf ≤ 0 and there exists a positive constant c such that

‖f−p(·, t)‖L∞ ≤ c and sup
x∈M

|f(x, t)| ≤ c inf
x∈M

|f(x, t)|, for all 0 ≤ t < ∞.

We make use of the following uniformly parabolic systems
∂u

∂t
= (i + ε) {div(f(x, t)∇u)}

+i
{
(p− 1)∇f(x, t) · ∇u + k(x, t)|u|2u

}
, x ∈ M, t ≥ 0,

u(x, 0) = u0(x),

(2)

to approximate our equation. By an approximation argument, we obtain the following
results.


