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Abstract In this paper we aim to show a compactness theorem for SBVH(Ω) of
special functions u with bounded variation and with ∇c

Hu = 0 in the Heisenberg group
Hn.
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1. Introduction

A result concerning the decomposition of the Radon measure ∇Hu for u ∈ BVH(Ω)
with an open set Ω ⊂ Hn has been obtained in [1] that ∇Hu can be split into the
absolutely continuous part ∇a

Hu, jump part ∇j
Hu, and Cantor part ∇c

Hu, i.e.,

∇Hu = ∇a
Hu+∇j

Hu+∇c
Hu (1)

= Lu · L2n+1 +
2ω2n−1

ω2n+1
(u+ − u−)νuS

Q−1
d bJu +∇c

Hu, (2)

where Lu = (L1, · · · , L2n) : Ω → R2n is the approximate Pansu’s differential of u, while
u+, u−, νu are respectively the approximate upper limit, lower limit and jump direction
of u at a jump point. The three parts on the right-hand side of (2) are mutually
singular. The space SBVH(Ω) consisted of u ∈ BVH(Ω) with ∇c

Hu = 0 is one of the
most suitable frameworks in which lots of problems of calculus of variation can be
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solved. For instance, a typical variational problem containing a volume and a surface
energy is

min
{∫

Ω
[|Lu|2 + α(u− g)2]dh+ βSQ−1

d (Su) : u ∈ SBVH(Ω)
}
, (3)

where α, β > 0, g ∈ L∞(Ω) are fixed, SQ−1
d denotes (Q − 1) dimensional spherical

Hausdorff measure in Hn in the sense of the metric d, K runs over all the subsets
of Hn and u varies in C1

H(Ω \ K). When such a problem is considered by means of
the direct method of calculus variation, the compactness theorem of SBVH(Ω) will
play an important role. Motivated by an idea of [2], one can consider the behavior
of u ∈ BVH(Ω) composed with a C1

0 function to characterize SBVH functions hence
to prove the compactness theorem. In [3] we have investigated the composed function
v = f ◦ u where u ∈ BVH(Ω) and f : R1 → R1 is a Lipschitz function and found
that the diffuse part (see Definition 2.1), and the jump part of the derivative ∇Hv

behave in a quite different way. In analogy with the classical chain rule formula,

∇̃Hv = f ′(ũ)∇̃Hu, while ∇j
Hv =

f(u+)− f(u−)
u+ − u−

∇j
Hu. Starting from this point, we will

establish a useful criterion for membership to SBVH(Ω) which can directly be used to
prove the compactness of SBVH(Ω).

2. Preliminaries

Now we briefly introduce the Heisenberg group Hn which is generated by the vector
fields X1, · · · , Xn, Y1, · · · , Yn, where Xj = ∂

∂xj
+ 2yj

∂
∂t , Yj = ∂

∂yj
− 2xj

∂
∂t , j = 1, · · · , n

([4-8]). If P = [z, t], Q = [ξ, τ ] with z, ξ ∈ Cn, t, τ ∈ R1 are points of Hn, we define

P ·Q := [z + ξ, t+ τ + 2Im(zξ̄)] as the group operation,
P−1 := [−z,−t] as the inverse of P,
δr(P ) := [rz, r2t] as a family of nonisotropic dilations (r > 0),
τP (Q) := P ·Q (P fixed) as the group translation from Hn to Hn,

‖P‖∞ := max{|z|, |t|
1
2 } as a homogeneous norm of Hn,

d(P,Q) := ‖P−1 ·Q‖∞ as the distance between points P and Q,

πP0([z, t]) :=
n∑

j=1
(xjXj(P0) + yjYJ(P0)) if P0 ∈ Hn, z = x+ iy.

The distance defined as above is equivalent to the C-C distance dC(·, ·) associated
with X1, · · · , Xn, Y1, · · · , Yn ([9]). B(P, r), Br means, respectively, closed ball with cen-
ter P and center 0 and with a common radius r with respect to the metric d.

It is well known that the Hausdorff dimension of (Hn, d) is Q = 2n+ 2. A natural
measure dh on Hn given by the Lebesgue measure dL2n+1 = dzdt on Cn × R1 is left
(right) invariant and is the Haar measure of Hn ([10]). Throughout this paper Hs

d(Ss
d)

denotes the d-metric s-dimensional Hausdorff (̇spherical Hausdorff ) measure ([6,10]),


