MORREY REGULARITY OF SOLUTIONS TO DEGENERATE ELLIPTIC EQUATIONS IN R^{n}

Chen Yemin

(Partner Group of MPI for Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, 100080, China) (E-mail: chym@mx.amss.ac.cn) (Received Mar. 21, 2002)

Abstract In this paper, we study the Morrey regularity of solutions to the degenerate elliptic equation $-(a_{ij}u_{x_i})_{x_j} = -(f_j)_{x_j}$ in \mathbb{R}^n . For this purpose, we introduce four weighted Morrey spaces in \mathbb{R}^n .

Key Words Regularity; degenerate elliptic equations; weighted Morrey spaces.
2000 MR Subject Classification 35B65, 35J70.
Chinese Library Classification 0175.25.

1. Introduction

The aim of this paper is to consider in \mathbb{R}^n the equation

$$Lu \equiv -(a_{ij}u_{x_i})_{x_j} = -(f_j)_{x_j},\tag{1}$$

for which we assume that $a_{ij}(x)$ are symmetry, measurable and there exists $\nu > 0$, such that for all $\xi \in \mathbb{R}^n$ and a.a. $x \in \mathbb{R}^n$,

$$\nu^{-1}\omega(x)|\xi|^2 \le a_{ij}(x)\xi_i\xi_j \le \nu\omega(x)|\xi|^2,\tag{2}$$

where $\omega(x)$ belongs to the Muckenhoupt class A_2 . We also assume that $f_j/\omega \in L^2(\mathbb{R}^n, \omega)$.

Since the middle of the 20th century, people have gotten many results about the equation (??) in the bounded open subset of \mathbb{R}^n . And we can also consider the equation in \mathbb{R}^n . In [?], S. Leonardi studied in \mathbb{R}^n the equation (??) in the uniformly elliptic case. We will extend the results in [?] to the degenerate case. For this purpose, we will introduce four weighted Morrey spaces in the next section.

2. Preliminaries

We give some definitions first.

Definition 2.1 Let $\omega(x) > 0$, $\omega(x) \in L^1_{loc}(\mathbb{R}^n)$, $1 . We say <math>\omega(x)$ is an A_p weight, which is denoted by $\omega(x) \in A_p$ if

$$\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} \omega(y) dy\right) \left(\frac{1}{|Q|} \int_{Q} \omega(y)^{-\frac{1}{p-1}} dy\right)^{p-1} \le C < +\infty,$$

where Q is a cube in \mathbb{R}^n .

Let ω be an open set of \mathbb{R}^n , ω be an A_2 weight, $1 \leq p < +\infty$. We give the definitions of weighted Lebesgue spaces and weighted Sobolev spaces.

 $L^p(\Omega, \omega)$ is the space of measurable f in Ω , such that

$$||f||_{L^p(\Omega,\omega)} = \left(\int_{\Omega} |f(x)|^p \omega(x) dx\right)^{\frac{1}{p}} < +\infty$$

 $L^{\infty}(\Omega, \omega)$ is the space of measurable f in Ω , such that

$$||f||_{L^{\infty}(\Omega,\omega)} = \inf \{a \ge 0 : \omega \left(\{x \in \Omega : |f(x)| > a \} \right) = 0 \} < +\infty.$$

 $Lip(\overline{\Omega})$ denotes the class of Lipschitz functions in $\overline{\Omega}$. $Lip_0(\Omega)$ denotes the class of functions $f \in Lip(\overline{\Omega})$ with compact support contained in Ω . If $f \in Lip(\overline{\Omega})$, we can define the norm

$$\|f\|_{H^{1,p}(\Omega,\omega)} = \|f\|_{L^{p}(\Omega,\omega)} + \|\nabla f\|_{L^{p}(\Omega,\omega)}.$$
(3)

 $H^{1,p}(\Omega,\omega)$ denotes the closure of $Lip(\overline{\Omega})$ under the norm (??). We say that $f \in H^{1,p}_{loc}(\Omega,\omega)$ if $f \in H^{1,p}(\Omega',\omega)$ for every $\Omega' \subset \subset \Omega$. $H^{1,p}_0(\Omega,\omega)$ denotes the closure of $Lip_0(\Omega)$ under the norm (??).

Now we introduce four kinds of weighted Morrey spaces in \mathbb{R}^n . Let $p \ge 1, \lambda \in \mathbb{R}$, we have

Definition 2.2 Let
$$||f||_{L^{p,\lambda}(\mathbb{R}^{n},\omega)}^{p} = \sup_{\substack{x \in \mathbb{R}^{n} \\ r > 0}} \frac{r^{-\lambda}}{\omega(B_{r}(x))} \int_{B_{r}(x)} |f(y)|^{p} \omega(y) dy.$$
 We set
 $L^{p,\lambda}(\mathbb{R}^{n},\omega) = \left\{ f \in L^{p}(\mathbb{R}^{n},\omega) : ||f||_{L^{p,\lambda}(\mathbb{R}^{n},\omega)} < +\infty \right\}.$

Definition 2.3 Let $||f||_{\tilde{L}^{p,\lambda}(\mathbb{R}^n,\omega)}^p = \sup_{\substack{x \in \mathbb{R}^n \\ r > 0}} \omega(B_r(x))^{-\lambda} \int_{B_r(x)} |f(y)|^p \omega(y) dy$. We set

$$\tilde{L}^{p,\lambda}(\mathbf{R}^{\mathbf{n}},\omega) = \left\{ f \in L^{p}(\mathbf{R}^{\mathbf{n}},\omega) : \|f\|_{\tilde{L}^{p,\lambda}(\mathbf{R}^{\mathbf{n}},\omega)} < +\infty \right\}.$$

Definition 2.4 Let
$$||f||_{M^{p,\lambda}(\mathbb{R}^n,\omega)}^p = \sup_{x\in\mathbb{R}^n} \int_0^{+\infty} r^{-\lambda-1} \left(\int_{B_r(x)} |f(y)|^p \omega(y) dy \right) dr$$
. We $M^{p,\lambda}(\mathbb{R}^n,\omega) = \left\{ f \in L^p(\mathbb{R}^n,\omega) : ||f||_{M^{p,\lambda}(\mathbb{R}^n,\omega)} < +\infty \right\}.$

set