INITIAL BOUNDARY VALUE PROBLEM FOR A DAMPED NONLINEAR HYPERBOLIC EQUATION *

Chen Guowang

(Department of Mathematics, Zhengzhou University, Zhengzhou 450052, China E-mail : chen_gw@371.net) Dedicated to the 80th birthday of Professor Zhou Yulin (Received May 20, 2002)

Abstract In the paper, the existence and uniqueness of the generalized global solution and the classical global solution of the initial boundary value problems for the nonlinear hyperbolic equation

$$u_{tt} + k_1 u_{xxxx} + k_2 u_{xxxxt} + g(u_{xx})_{xx} = f(x,t)$$

are proved by Galerkin method and the sufficient conditions of blow-up of solution in finite time are given.

Key Words Nonlinear hyperbolic equation, initial boundary value problem, global solution, blow-up of solution

2000 MR Subject Classification 35L35, 35G30. **Chinese Library Classification** 0175.27, 0175.29, 0175.4.

1. Introduction

In this work we devote to the following damped nonlinear hyperbolic equation

$$u_{tt} + k_1 u_{x^4} + k_2 u_{x^4t} + g(u_{xx})_{xx} = f(x, t), \qquad x \in \Omega, \ t > 0$$
(1.1)

with the initial boundary value conditions

$$u(0,t) = u(1,t) = 0,$$
 $u_{xx}(0,t) = u_{xx}(1,t) = 0,$ $t > 0,$ (1.2)

$$u(x,0) = \varphi(x), \qquad u_t(x,0) = \psi(x), \qquad x \in \overline{\Omega}$$
(1.3)

or with

$$u_x(0,t) = u_x(1,t) = 0, \qquad u_{x^3}(0,t) = u_{x^3}(1,t) = 0, \qquad t > 0,$$
 (1.4)

$$u(x,0) = \varphi(x), \qquad u_t(x,0) = \psi(x), \qquad x \in \overline{\Omega}$$
(1.5)

or with

$$u(0,t) = u(1,t) = 0,$$
 $u_x(0,t) = u_x(1,t) = 0,$ $t > 0,$ (1.6)

$$u(x,0) = \varphi(x), \qquad u_t(x,0) = \psi(x), \qquad x \in \overline{\Omega},$$
(1.7)

^{*}Supported by the National Natural Science Foundation of China (No.10071074) and by the Natural Science Foundation of Henan Province (No.00450100).

where u(x,t) denotes an unknown function, k_1 and k_2 are two positive constants, g(s) is a given nonlinear function, f(x,t) is a given function, $\varphi(x)$ and $\psi(x)$ are given initial value functions which satisfy the continuous conditions:

$$\begin{aligned} \varphi_{x^{2k}}(0) &= \varphi_{x^{2k}}(1) = \psi_{x^{2k}}(0) = \psi_{x^{2k}}(1) = 0, \quad (k = 0, 1) \text{ in } (1.3); \\ \varphi_{x^{2k+1}}(0) &= \varphi_{x^{2k+1}}(1) = \psi_{x^{2k+1}}(0) = \psi_{x^{2k+1}}(1) = 0, \quad (k = 0, 1) \text{ in } (1.5). \end{aligned}$$

and $\Omega = (0, 1)$.

The equation (1.1) describes the motion for a class of nonlinear beam models with linear damping and general external time dependent forcing; for more physical interpretation of the equation (1.1) we refer to [1, 2].

The equation (1.1) and its multidimensional case have attracted much attention in recent years; for the well-posedness we refer to [3–5]. In [2] the authors have proved that the problem (1.1), (1.6), (1.7) has a unique global weak solution. In [1] the authors have been successful in proving the global existence of weak solutions for the multidimensional problem (1.1), (1.6), (1.7) by using a variational approach and the semigroup formulation. The energy decay of the mutidimensional problem (1.1), (1.6), (1.7) was given in [6].

In this paper, we are going to prove that the problem (1.1)-(1.3) or the problem (1.1), (1.4),(1.5) has a unique generalized global solution and a unique classical global solution by Galerkin method. We shall also show that the problem (1.1), (1.6), (1.7) has a unique generalized local solution. Finally, some sufficient conditions of blow-up of the solution for the problem (1.1), (1.6), (1.7) are given.

Throughout this paper, we use the following notations: $\|\cdot\|$, $\|\cdot\|_{Q_t}$, $\|\cdot\|_{\infty}$, $\|\cdot\|_{p(\Omega)}$ and $\|\cdot\|_{p(Q_t)}$ denote the norm of spaces $L^2(\Omega)$, $L^2(Q_t)$, $L^{\infty}(\Omega)$, $H^p(\Omega)$ and $H^p(Q_t)$, where $Q_t = \Omega \times (0, t)$ and $1 \le p < \infty$.

2. Global existence and uniqueness of solutions

In order to prove that the problem (1.1)-(1.3) has the generalized global solution and the classical global solution, we now introduce an orthonormal base in $L^2(\Omega)$. Let $\{y_i(x)\}$ be the orthonormal base in $L^2(\Omega)$ composed of the eigenvalue problem

$$y'' + \lambda y = 0, \qquad x \in \Omega$$
$$y(0) = y(1) = 0$$

corresponding to eigenvalue $\lambda_i (i = 1, 2, \dots)$, where "'" denotes the derivative. Let

$$u_N(x,t) = \sum_{i=1}^{N} \alpha_{Ni}(t) y_i(x)$$
(2.1)

be Galerkin approximate solution of the problem (1.1)-(1.3), where $\alpha_{Ni}(t)$ $(i = 1, 2, \dots, N)$ are the undetermined functions, N is a natural number. Suppose that the initial value functions $\varphi(x)$ and $\psi(x)$ may be expressed