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Abstract In the paper, the existence and uniqueness of the generalized global
solution and the classical global solution of the initial boundary value problems for the
nonlinear hyperbolic equation

utt + k1uxxxx + k2uxxxxt + g(uxx)xx = f(x, t)

are proved by Galerkin method and the sufficient conditions of blow-up of solution in
finite time are given.
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1. Introduction

In this work we devote to the following damped nonlinear hyperbolic equation

utt + k1ux4 + k2ux4t + g(uxx)xx = f(x, t), x ∈ Ω, t > 0 (1.1)

with the initial boundary value conditions

u(0, t) = u(1, t) = 0, uxx(0, t) = uxx(1, t) = 0, t > 0, (1.2)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ Ω (1.3)

or with

ux(0, t) = ux(1, t) = 0, ux3(0, t) = ux3(1, t) = 0, t > 0, (1.4)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ Ω (1.5)

or with

u(0, t) = u(1, t) = 0, ux(0, t) = ux(1, t) = 0, t > 0, (1.6)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ Ω, (1.7)
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where u(x, t) denotes an unknown function, k1 and k2 are two positive constants, g(s)
is a given nonlinear function, f(x, t) is a given function, ϕ(x) and ψ(x) are given initial
value functions which satisfy the continuous conditions:

ϕx2k(0) = ϕx2k(1) = ψx2k(0) = ψx2k(1) = 0, (k = 0, 1) in (1.3);

ϕx2k+1(0) = ϕx2k+1(1) = ψx2k+1(0) = ψx2k+1(1) = 0, (k = 0, 1) in (1.5)

and Ω = (0, 1).
The equation (1.1) describes the motion for a class of nonlinear beam models with

linear damping and general external time dependent forcing; for more physical inter-
pretation of the equation (1.1) we refer to [1, 2].

The equation (1.1) and its multidimensional case have attracted much attention in
recent years; for the well-posedness we refer to [3–5]. In [2] the authors have proved
that the problem (1.1), (1.6), (1.7) has a unique global weak solution. In [1] the
authors have been successful in proving the global existence of weak solutions for the
multidimensional problem (1.1), (1.6), (1.7) by using a variational approach and the
semigroup formulation. The energy decay of the mutidimensional problem (1.1), (1.6),
(1.7) was given in [6].

In this paper, we are going to prove that the problem (1.1)-(1.3) or the problem
(1.1), (1.4),(1.5) has a unique generalized global solution and a unique classical global
solution by Galerkin method. We shall also show that the problem (1.1), (1.6), (1.7)
has a unique generalized local solution. Finally, some sufficient conditions of blow-up
of the solution for the problem (1.1), (1.6), (1.7) are given.

Throughout this paper, we use the following notations:‖ · ‖, ‖ · ‖Qt , ‖ · ‖∞, ‖ · ‖p(Ω)

and ‖ · ‖p(Qt) denote the norm of spaces L2(Ω), L2(Qt), L∞(Ω), Hp(Ω) and Hp(Qt),
where Qt = Ω× (0, t) and 1 ≤ p <∞.

2. Global existence and uniqueness of solutions

In order to prove that the problem (1.1)-(1.3) has the generalized global solution
and the classical global solution, we now introduce an orthonormal base in L2(Ω). Let
{yi(x)} be the orthonormal base in L2(Ω) composed of the eigenvalue problem

y′′ + λy = 0, x ∈ Ω,

y(0) = y(1) = 0

corresponding to eigenvalue λi(i = 1, 2, · · ·), where ”′” denotes the derivative. Let

uN (x, t) =
N∑

i=1

αNi(t)yi(x) (2.1)

be Galerkin approximate solution of the problem (1.1)-(1.3), where αNi(t) (i = 1, 2, · · · ,
N) are the undetermined functions, N is a natural number. Suppose that the initial
value functions ϕ(x) and ψ(x) may be expressed


