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Abstract We study the vortex convergence for an inhomogeneous Ginzburg-
Landau equation, −∆u = ε−2u(a(x) − |u|2), and prove that the vortices are attracted
to the minimum point b of a(x) as ε → 0. Moreover, we show that there exists a
subsequence ε→ 0 such that uε converges to u strongly in H1

loc(Ω̄ \ {b}).
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1. Introduction

Let Ω ⊂ R2 be a smooth, bounded and simply connected domain occupied by an
inhomogeneous type II-superconducting material. Due to the inhomogeneities, the equi-
librium density of superconducting electrons is not a constant, but a positive smooth
function on Ω. Denote it by a = a(x). In the steady state, this model, proposed by
Likharev [1], is characterized by the following equations: ∆u = − u

ε2
(a(x)− |u|2), in Ω,

u(x) = g1(x), on ∂Ω.
(1.1)

Also see [2] and [3, 4] for more-complicated time-dependent model. In the equation
(1.1), we suppose that g1 : ∂Ω −→ R2 is smooth and satisfies

|g1(x)| =
√
a(x) on ∂Ω. (1.2)
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It is easy to see that there exists at least a smooth solution uε to (1.1) for each ε > 0.
In fact, the minimizer of the functional

Eε(u) =
1
2

∫
Ω

(
|∇u|2 +

1
2ε2

(a(x)− |u|2)2
)
dx (1.3)

on H1
g1(Ω) = {u ∈ H1(Ω, R2) : u = g1, on ∂Ω} is a solution of (1.1). Such a u is

called a minimum solution to the equation (1.1).
We are interested in the asymptotic behavior of uε as ε −→ 0. In the case where

a(x) = 1 for any x ∈ Ω, this problem was studied by Bethuel, Brezis and Hélein in
[5], Struwe in [6] and Lin in [7]. In this case, the value d1 = deg(g1, ∂Ω), the Brouwer
degree of g1 considered as a map from ∂Ω into S1, plays a crucial role. When d1 = 0,
the results in [8] show that the minimum solution converges to a smooth harmonic map
from Ω into S1 which equals to g1 on ∂Ω; when d1 6= 0, the situation is much more
delicate, and singularities and vortices appear. See [5-7] for the details. In the case
where a(x) is not a constant, for example, a(x) has a strict minimum in Ω, Chapman
and Richardson in a recent paper [2] used a matched asymptotic method to derive
formally that the vortices, i.e., the points at which the solution for the equation (1.1)
(more generally, for a time dependent equation whose stead-state is (1.1)) equals to
zero, are attracted to the the minimum of a(x). In [9], the authors tried to prove this
phenomenon rigorously. But no H1-strong convergence has been obtained.

In this paper, we will prove a H1-strong convergence result. To state this main
result, we set

g(x) =
g1(x)√
a(x)

, d = deg(g, ∂Ω).

Then, under the hypothesis (h2) below, one has

d =
1

2π

∫
∂Ω

g

|g|2
∧ ∂g

∂T
=

1
2π

∫
∂Ω

g1
|g|21

∧ ∂g1
∂T

= d1.

We may assume d > 0 since the case d < 0 is completely similar to the case d > 0 and
no vortex is expected to be appeared in the case d = 0. For simplicity, we only consider
the case where a(x) has a unique minimum; more precisely, assume that b = (b1, b2) ∈ Ω
is the only minimum point of a(x) in Ω̄. Moreover, we will suppose that

(h1) Ω is starshaped with respect to the point b;
(h2) a ∈ C3(Ω̄) and a(x) > 0 for all x ∈ Ω̄;
(h3) ∇a(x) · (x − b) > 0 for all x 6= b, x ∈ Ω̄ and the matrix function M = (mkj),

where mkj = ∂a(x)
∂xk

(xj − bj), k, j = 1, 2, is semi-positive definite for all x ∈ Ω;
or
(h′3) (∇a(x)) · (x− b)− 2|(∇a(x))⊥ · (x− b)| > 0 for any x ∈ Ω̄ and x 6= b, where

(∇a(x))⊥ =
(
−∂a(x)

∂x2
,
∂a(x)
∂x1

)
.


