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Abstract The structure of positive radial solutions to a class of quasilinear elliptic
equations with critical and supercritical growth is precisely studied. A large solution
and a small solution are obtained for the equations. It is shown that the large solution
is unique, its asymptotic behaviour and flat core are also discussed.
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1. Introduction

In this paper we consider the quasilinear elliptic problem

−∆pu = uk − εuq in B, u = 0 on ∂B, (Iε)

where ∆pu = div(|Du|p−2Du), p > 1; q > k ≥ kN :=
(N + 1)p−N

N − p
; ε > 0; B is the

unit ball in RN with N > p. Clearly, (Iε) is a purterbed problem of the problem

−∆pu = uk in B, u = 0 on ∂B. (1.1)

The Pohozaev’s identity (see [1]) implies that (1.1) has no positive solution.
We are interested in the structure of positive radial solutions of (Iε) when ε is

sufficiently small. By a positive solution uε of (Iε), we mean that uε ∈W 1,p
0 (B)∩C1(B),

uε > 0 in B and ∫
B
|Duε|p−2Duε ·Dϕdx =

∫
B

[
uk

ε − εuq
ε

]
ϕdx

for all ϕ ∈W 1,p
0 (B).

We show that the problem (Iε), which we call the approach problem, has at least
two positive radial solutions: uε, uε for ε > 0 sufficiently small; uε is a large solution
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and uε is a small solution. By a large positive radial solution uε of (Iε), we mean that
there exists 0 < r0 < 1 (independent of ε) such that

lim inf
ε→0

ε1/(q−k)uε(r) > 0 for r ∈ [0, r0]. (1.2)

By a small positive radial solution uε of (Iε), we mean that uε is a positive solution of
(Iε) and ε1/(q−k)uε → 0 in any compact set in [0, 1]\{0} as ε → 0. Moreover, we also
show that the large positive radial solution of (Iε) is unique when ε is sufficiently small.

Now, we write the equation in (Iε) to the form:

−∆p(ε1/(q−k)u) = ε−(k−p+1)/(q−k)
[
(ε1/(q−k)u)k − (ε1/(q−k)u)q

]
.

Setting w = ε1/(q−k)u, λ = ε−(k−p+1)/(q−k) and ξ(s) = sk(1 − sq−k), we obtain an
equivalent form of (Iε) :

−∆pw = λξ(w) in B, w = 0 on ∂B. (Jλ)

Moreover, λ → +∞ as ε → 0+ since k + 1 ≥ Np
N−p > p. We shall always use the form

(Jλ) in the follows.
The problem (Jλ) with p > 2 has been studied by many authors in general smooth

domains Ω. There are a few works on the equidiffusive case p = k + 1 as follows. Let
λ1 be the first eigenvalue of −∆p under zero Dirichlet boundary condition. In the one-
dimensional case N = 1, Guedda and Véron [2] have shown by phase-plane analysis
that if λ > λ1, then (Jλ) has a unique positive solution wλ with ‖wλ‖∞ ≤ 1, and that
a set called the flat core of wλ,

Oλ = Oλ(wλ) := {x ∈ Ω : wλ(x) = 1} (1.3)

is non-empty for sufficiently large λ. Since the length of Oλ can be indicated explicitly,
we can see that as λ→∞, Oλ spreads out toward the whole of Ω with the growth as

lim
λ→∞

λ1/pdist(Oλ, ∂Ω) = C(ξ, p) (1.4)

where C(ξ, p) =
(p− 1

p

)1/p
∫ 1

0
(Ξ(1)−Ξ(s))−1/pds and Ξ(s) =

∫ s

0
ξ(t)dt. In the higher-

dimensional case N ≥ 2, the phase-plane analysis is no longer useful and one has to
use other methods. Constructing a suitable subsolution by using eigenfunction for λ1,
Kamin and Véron [3] have proved that the unique solution of (Jλ) has a flat core
for sufficiently large λ and extended the results of [2]. However, they gave only an
estimate dist(Oλ, ∂Ω) ≤ Cλ−1/p as λ → ∞, where C is a constant independent of λ,
without explicit information about C and any estimate of dist(Oλ, ∂Ω) from below. In
virtue of an exact estimate for Oλ, Melián and de Lis [4] have utilized the solutions for
N = 1, whose dependence on λ is understood well, to make super- and subsolutions
and conclude that (1.4) also holds true in the case N ≥ 2. Under a stronger condition


