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Abstract In this paper, we use the Wigner measure approach to study the semiclassical
limit of nonlinear Schrödinger equation in small time. We prove that: the limits of the quantum
density: ρε =: |ψε|2, and the quantum momentum: Jε =: εIm(ψε∇ψε) satisfy the compressible
Euler equations before the formation of singularities in the limit system.
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1. Introduction

In this paper, we consider the local in time semiclassical limit of the following non-
linear Schrödinger equation in three space dimension:

{
iε∂tψ

ε = − ε2

2 4ψε + V εψε, V ε = g(|ψε|2), x ∈ R3, t ≥ 0,

ψε(t = 0, x) =
√

ρε
0(x) exp( i

εS
ε(x)),

(1.1)

where ψε denotes the condensate wave function in the quantum mechanics, and ε is the
normalized Planck constant.

Equations of type (1.1) have been proposed as multiparticle approximations in the
mean-field theory of Quantm Mechanics, when one considers a large number of quantum
particles acting in unison and takes into account only a finite number of particle-particle
intereactions. It is a fundamental principle in quantum mechanics that: when the time
and distance scales are large enough relative to the Planck’s constant, the quantum
density: |ψε|2, and the quantum momentum: εIm(ψε∇ψε), will approximately obey
the laws of classical, Newtonian mechanics. And the quantum-mechanical pressure
disappears in the semiclassical limit, the isentropic compressible Euler equations are
formally recovered from the nonlinear Schrödinger equation.

When g′(·) > 0,, the phase function Sε(x) is independent of ε, and the amplitude√
ρε
0(x) is given by the expansion:

∑N
i=1 aj(x)εj+εNrN (x, ε) with limε→0 ‖rN (·, ε)‖Hs =
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0 for s large enough, Grenier ([1]) obtained a similar expansion for the solution of (1.1)
in small time. His main idea is that: instead of looking as usual at solution ψε of the
form:

ψε(t, x) = aε(t, x)e
iS(t,x)

ε ,

with S independent of ε, he looks for solution ψε of the form:

ψε(t, x) = aε(t, x)e
iSε(t,x)

ε , (1.2)

where aε is again a complex-valued function. By plugging (1.2) to (1.1), separating
the real and imaginary part, one can get the governing equations for aε and Sε. Then
the standard energy estimate for symmetric hyperbolic equations can be used to solve
this problem. And in one space dimension with V ε = (|ψ|2 − 1), Jin, Levermore and
Mclaughlin globally ([2]) solved the limit by the inverse scattering method.

This paper is a following one of [3]. As in [3], we consider the oscillatory initial data
for (1.1). Here Sε(x) depends on ε, and

√
ρε
0(x) does not have the explicit expansion

any more. Instead, we will assume some limits for ρε
0 and ∇Sε, then study what kind

of equations will be satisfied by the weak limits of |ψε|2 and εIm(ψε∇ψε) in small time.
The main idea of the proof is from [3], which is motivated by [4] and [5], also this idea
is used by Marjolaine in her thesis on the convergence of scaled Schrödinger-Poisson
equation to the incompressible Euler equation. Namely, we are going to study the
Wigner transformation f ε(t, x, ξ) to the solutions of (1.1):

f ε(t, x, ξ) =
1

(2π)3

∫

R3

e−iξyψε(t, x +
εy

2
)ψε(t, x− εy

2
) dy, (1.3)

which was introduced by Wigner in 1932 in quantum mechanics.
Then trivial calculation shows that f ε(t, x, ξ) satisfies the following equation:

{
∂tf

ε + ξ · ∇f ε + θ[V ε]f ε = 0,

f ε(t = 0, x, ξ) = f ε
I (x, ξ),

(1.4)

where θ[V ε]f ε(t, x, ξ) is the pseudo-differential operator:

θ[V ε]f ε(t, x, ξ)

=
i

(2π)d

∫

R3

∫

R3

V ε(t, x + εy
2 )−V ε(t, x− εy

2 )
ε

f ε(t, x, η)e−i(ξ−η)y dη dy. (1.5)

Formally passing ε → 0 in (1.4), we get




∂tf + ξ · ∇xf − E∇ξf = 0,

E = ∇g(ρ), ρ =
∫
R3 f(t, x, dξ),

f(t = 0, x, ξ) = f0(x, ξ),
(1.6)


