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Rochelle, UMR CNRS 7356, F-17042 La Rochelle Cedex, France
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Abstract. Our aim in this paper is to study a fully discrete scheme for modified higher-
order (in space) anisotropic generalized Cahn-Hilliard models which have extensive
applications in biology, image processing, etc. In particular, the scheme is a combina-
tion of finite element or spectral method in space and a second-order stable scheme in
time. We obtain energy stability results, as well as the existence and uniqueness of the
numerical solution, both for the space semi-discrete and fully discrete cases. We also
give several numerical simulations which illustrate the theoretical results and, espe-
cially, the effects of the higher-order terms on the anisotropy.
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1 Introduction

The Cahn-Hilliard equation
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∂u

∂t
+∆2u−∆ f (u)=0 (1.1)

plays an essential role in materials science and describes important qualitative features
of two-phase systems related with phase separation processes, assuming isotropy and a
constant temperature (see, e.g., [6,7,15,40,41]).

Here, u is the order parameter (e.g., a density of atoms) and f is the derivative of
a double-well potential F. A thermodynamically relevant potential F is the following
logarithmic function which follows from a mean-field model:
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s∈ (−1,1), 0< θ< θc , (1.2)

i.e.,

f (s)=−θcs+
θ

2
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, (1.3)

although such a function is very often approximated by regular ones, typically,

F(s)=
1

4
(s2−1)2, (1.4)

i.e.,

f (s)= s3−s. (1.5)

Now, it is interesting to note that the Cahn-Hilliard equation and some of its vari-
ants are also relevant in other phenomena than phase separation. We can mention,
for instance, population dynamics (see [17]), tumor growth (see [1,31]), bacterial films
(see [32]), thin films (see [43,45]), image processing (see [3,4,8,10,18]) and even the rings
of Saturn (see [46]) and the clustering of mussels (see [34]).

In particular, several such phenomena can be modeled by the following generalized
Cahn-Hilliard equation:

∂u

∂t
+∆2u−∆ f (u)+g(x,u)=0. (1.6)

We studied in [36,39] (see also [1,10,16,20]) this equation.
The Cahn-Hilliard equation is based on the so-called Ginzburg-Landau free energy,

ΨGL=
∫

Ω

(

1

2
|∇u|2+F(u)

)

dx, (1.7)

where Ω is the domain occupied by the system (we assume here that it is a bounded
and regular domain of R

d, d = 1, 2 or 3, with boundary Γ). In particular, in (1.7), the


