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Abstract. An optimal error estimate in L2−norm for Fourier spectral method is pre-
sented for the Kawahara equation with periodic boundary conditions. A numerical
example is provided to confirm the theoretical analysis. The method and proving skills
are also applicable to the periodic boundary problems for some nonlinear dispersive
wave equations provided that the dispersive operator is bounded and antisymmetric
and commutes with differentiation.
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1 Introduction

We will analyze Fourier spectral method for the Kawahara equation with periodic bound-
ary conditions:















∂tU+∂xF(U)+∂3
xU−∂5

xU=0, x∈R, t∈ (0,T],

U(x+2π,t)=U(x,t), x∈R, t∈ (0,T],

U(x,0)=U0(x), x∈R,

(1.1)

where U0 is 2π-periodic in space and F(U)=αU+U2/2, α is a non-negative real constant.
The Kawahara equation, also known as fifth-order Korteweg-de Vries equation, arises in
the study of several physical phenomena, such as water waves and plasma physics [1–4].
The Fourier spectral methods for the initial- and periodic boundary-value problems of
the Kawahara equation have been studied together with time-stepping methods, e.g.,
the mixture of integrating factor with fourth-order Runge-Kutta method [5], leapfrog
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method [6] and the mixture of exponential time differencing with fourth-order Runge-
Kutta method [7]. For non-periodic boundary-value problems of the equation, a fully
discrete Crank-Nicolson leapfrog dual-Petrov-Galerkin scheme was used in [8, 9].

The semi-discrete Fourier spectral method for (1.1) is to find uN(t)∈VN such that for
any v∈VN and t∈ (0,T],

{

(∂tuN(t)+∂xPN F(uN(t))+∂3
xuN(t)−∂5

xuN(t),v)=0,

(uN(0),v)=(PNU0,v).
(1.2)

Here (·,·) is the inner product L2(I), I=(−π,π), PN :L2(I)→VN is the Fourier orthogonal
projection operator, i.e.,

(PNu−u,v)=0, v∈VN ,

and the approximation space VN of the real trigonometric polynomials of degree N is
defined by

VN =

{

u(x)=
N

∑
k=−N

akeikx : ak = a−k, −N≤ k≤N

}

.

This semidiscrete scheme was considered in [6] and an optimal error estimate was
claimed. The estimate in [6] was based on the optimal estimate of the projection (2.6).
However, an optimal estimate of the numerical solution cannot be obtained even though
the error estimate for the projection is optimal, see Remark 2.1. Here we present a new
projection, see (2.4) and obtain optimal error estimates for both our projection and the
numerical solution.

We will focus on optimal error estimate in L2-norm of the semi-discrete Fourier spec-
tral method for (1.1). A fully discrete scheme can be obtained when we discretize in time
the semi-discrete scheme using the second-order leapfrog-Crank-Nicolson method [10,
11] and optimal error estimate can also be obtained in space. We will not elaborate on the
estimate for the fully discrete scheme since the estimate can be done similarly as in [12].

In Section 2, we give some lemmas and theorems needed in the error estimate. In
Section 3, we analyze the stability and convergence of the semi-discrete Fourier spec-
tral method. In Section 4, we present a numerical example for the Kawahara equation
showing the accuracy of the fully discrete Fourier spectral method in space and time.

2 Preliminaries

In this section, we give some lemmas and theorems needed in the error estimate. Through-
out this article, C denotes a generic positive constant, independent of N.

Let I =(−π,π). The inner product and norm of L2(I) are denoted by (·,·) and ‖·‖,
respectively. For any non-negative real number r, we denote the usual Sobolev space by
Hr(I). The subspace of Hr(I) consisting of all periodic functions of period 2π is denoted


