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Abstract. We study one-dimensional Landau-Lifshitz Equations and give the suffi-
cient and necessary conditions for the existence of a class of periodic solutions.
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1 Introduction

Here we consider the following Schrödinger type flow

∂u

∂t
=u×(∆u+∇h∇u+λu3e3), (1.1)

where u(t,x)=(u1,u2,u3) :R×Rn→S2⊆R3, h∈C∞(Rn), λ∈R and e3=(0,0,1) denotes the
north pole. In fact, above equation is just Hamilton system with respect to the following
functional

Eh(u)=
1

2

∫

Rn
|∇u|2 ehdx+

λ

2

∫

Rn
(1−u2

3)ehdx. (1.2)

Let us recall some results on the Schrödinger type flow (1.1). Despite a great deal of
mathematical efforts, some basic mathematical issues such as the global well-posedness
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and global-in-time asymptotics for (1.1) are still unclear. Therefore, some authors (see
[5, 9, 10]) focused on finding some soliton solutions to (1.1). As h is a constant function,
equation (1.1) is just Landau-Lifshitz equation with easy-axis anisotropic, for simplicity,
denoted by LLEE. In [5], Gustafson and Shatah studied the time-periodic solitary wave
solutions (also called vortex solutions) to LLEE in two spatial dimensions with λ > 0
(see also [6]), while Lin and Wei ([9]) constructed traveling wave solutions with λ < 0.
However, Kollar ( [8]) showed the nonexistence of vortex solutions to the same problem
with λ=0 (See also [10]).Then limited work has been done in seeking for soliton solutions
to (1.1) for n=1 or n≥3.

The main purpose of this paper is to obtain some soliton solutions to equation (1.1)
on one-dimensional space, i.e. n=1. Specifically, we look for a solution of the following
form

u(t,x)=(sinα(x)cos(ωt),sinα(x)sin(ωt),cosα(x)), (1.3)

where α∈C∞(R) and ω∈R is the angular velocity. After a simple calculation, the equation
(1.1) reduces to an ordinary differential equation (ODE) of α(x)

α′′(x)+h′(x)α′(x)= g(α(x)), (1.4)

where

g(·)=λsin(·)cos(·)+ωsin(·). (1.5)

In view of physical background, we are more concerned with such solutions with
finite energy, i.e. |Eh(u)|<∞, which is equivalent to the following boundary condition of
α(x)

lim
x→∞

α(x)= kπ and lim
x→−∞

α(x)=(k+2l)π,

where k,l∈Z.
For simplicity, we only consider the case k=1 and l=−1, i.e.

lim
x→∞

α(x)=π and lim
x→−∞

α(x)=−π. (1.6)

In order to find solutions to problem (1.4)-(1.6), Let us consider the following bound-
ary value problem

(BVP)

{
α′′(x)+h′(x)α′(x)= g(α(x)), 0≤α(x)≤π, x∈ (0,∞),

α(0)=0, α(∞)=π,

where h∈C∞

0 (R) is an even function. It’s easy to verify that if α(x) is a solution to (BVP),
then

α(x)=

{
α(x), x∈ [0,∞),

−α(−x), x∈ (−∞,0)
(1.7)


