On [p, q]-order of Solutions of Higher Order Complex Linear Differential Equations in an Angular Domain of Unit Disc

Jianren Long^{1,2,*}

 ¹ School of Computer Science and School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, P. R. China.
 ² School of Mathematical Science, Guizhou Normal University, 550001, Guiyang, P.R. China.

Received May 18, 2016; Accepted January 25, 2017

Abstract. We study the growth of solutions of higher order complex linear differential equations in an angular domain of the unit disc instead of the whole unit disc. Some estimations of [p,q]-order of solutions of the higher order differential equations in an angular domain are found in this paper.

AMS subject classifications: 34M10, 30D35

Key words: Complex differential equation, analytic function, [p,q]-order, angular domain, unit disc.

1 Introduction and main results

For a function *f* meromorphic in the unit disc $\Delta = \{z: |z| < 1\}$, the order of growth is given by

$$\rho(f) = \limsup_{r \to 1^-} \frac{\log^+ T(r, f)}{\log \frac{1}{1-r}}.$$

If *f* is an analytic function in Δ , then the order of growth of *f* is often given by

$$\rho_M(f) = \limsup_{r \to 1^-} \frac{\log^+ \log^+ M(r, f)}{\log \frac{1}{1-r}},$$

where

$$M(r,f) = \max_{\substack{|z|=r\\z\in\Delta}} |f(z)|, \quad \log^+ x = \max\{\log x, 0\}.$$

*Corresponding author. *Email address:* longjianren2004@163.com, jrlong@gznu.edu.cn (J.R.Long)

http://www.global-sci.org/jms

©2017 Global-Science Press

It follows from the following inequality in [20, Theorem V.13]

$$T(r,f) \le \log^+ M(r,f) \le \frac{1+3r}{1-r} T\left(\frac{1+r}{2},f\right), \quad r \in (0,1),$$

that

$$\rho(f) \le \rho_M(f) \le \rho(f) + 1.$$

It is possible that there exists f such that $\rho(f) \neq \rho_M(f)$; for example, $f(z) = \exp\{(\frac{1}{1-z})^{\lambda}\}$ satisfies $\rho(f) = \lambda - 1$ and $\rho_M(f) = \lambda$, where $\lambda > 1$ is a constant, which can be found in [20, p. 205].

In order to state our results, some notations are needed. For any $r \in (0,\infty)$, $\exp_1 r = \exp r$, $\exp_{n+1}r = \exp(\exp_n r)$, $\log_1 r = \log r$, $\log_{n+1}r = \log(\log_n r)$, $n \ge 1$ is integer. $\exp_0(r) = r = \log_0 r$, $\exp_{-1}r = \log_1 r$. Second, we recall some definitions.

Definition 1.1 ([10]). For f meromorphic in Δ , set

$$D(f) = \limsup_{r \to 1^-} \frac{T(r, f)}{\log \frac{1}{1-r}}.$$

If $D(f) = \infty$, we say that f is admissible. If $D(f) < \infty$, we say that f is non-admissible.

For the function of fast growth in Δ , we also need the definition of iterated *p*-order, which can be found in [4].

Definition 1.2. *Let* f *be a meromorphic function in* Δ *. Then*

$$\rho_p(f) = \limsup_{r \to 1^-} \frac{\log_p^+ T(r, f)}{\log \frac{1}{1-r}},$$

where $p \ge 1$ is integer. If f is an analytic function in Δ , then the iterated p-order is also given by

$$\rho_{M,p}(f) = \limsup_{r \to 1^{-}} \frac{\log_{p+1}^{+} M(r, f)}{\log \frac{1}{1-r}}$$

Obviously, $\rho_1(f) \le \rho_{M,1}(f) \le \rho_1(f) + 1$ for any analytic functions in Δ . However, it follows from [20, Theorem V.13] that $\rho_p(f) = \rho_{M,p}(f)$ for $p \ge 2$. In general, $\rho_2(f)$ or $\rho_{M,2}(f)$ are called hyper-order of f in Δ . In this paper, we assume that the reader is familiar with the fundamental results and standard notation of the Nevanlinna's theory of meromorphic functions in Δ , see [15] and [25] for more details.

Definition 1.3 ([2,3]). Let $1 \le q \le p$ or $2 \le q = p+1$, and f be a meromorphic function in Δ . Then the [p,q]-order of f is defined as

$$\rho_{[p,q]}(f) = \limsup_{r \to 1^{-}} \frac{\log_p^+ T(r, f)}{\log_q \frac{1}{1-r}}.$$