Characterization by Symmetry of Solutions of a Nonlinear Subelliptic Equation on the Heisenberg Group

Yazhou Han¹, Xiaodong Wang² and Meijun Zhu^{3,*}

 ¹ Department of Mathematics, College of Science, China Jiliang University, Hangzhou, 310018, P.R. China.
² Department of Mathematics, Michigan State University, East Lansing, MI 48824,

USA. ³ Department of Mathematics, The University of Oklahoma, Norman, OK 73019, USA.

Received March 25, 2016; Accepted February 20, 2017

Abstract. In this paper we prove that two calculus lemmas, which are used in the method of moving sphere for classifying certain constant curvature equation, also hold on Heisenberg group \mathbb{H}^n .

AMS subject classifications: 35H20, 22E30

Key words: Classification, moving sphere method, Heisenberg group.

1 Introduction

The Heisenberg group \mathbb{H}^n consists of the set

$$\mathbb{C}^n \times \mathbb{R} = \left\{ (z,t) : z = (z_1, \cdots, z_n) \in \mathbb{C}^n, \ t \in \mathbb{R} \right\}$$

with the multiplication law

$$(z,t) \circ (z',t') = (z+z',t+t'+2Im(z\cdot \overline{z'})),$$

where $z \cdot \overline{z'} = \sum_{j=1}^{n} z_j \overline{z'_j}$. As usual, we write $z_j = x_j + \sqrt{-1}y_j$. The Lie algebra is spanned by the left invariant vector fields

$$T = \frac{\partial}{\partial t}, X_j = \frac{\partial}{\partial x_j} + 2y_j \frac{\partial}{\partial t}, Y_j = \frac{\partial}{\partial y_j} - 2x_j \frac{\partial}{\partial t}, j = 1, \cdots, n.$$

*Corresponding author. *Email addresses:* yazhou.han@gmail.com (Y. Han), xwang@math.msu.edu (X. Wang), mzhu@ou.edu (M. Zhu)

http://www.global-sci.org/jms

©2017 Global-Science Press

The sub-Laplacian is defined by

$$\Delta_H = \sum_{j=1}^n (X_j^2 + Y_j^2)$$

In this paper, we shall study the following semilinear subelliptic equation

$$-\Delta_H u = u^p, \quad u \ge 0, \quad \text{in} \quad \mathbb{H}^n, \tag{1.1}$$

where and throughout the paper we always assume that p > 1.

This equation is closely related to the study of the *CR* Yamabe problem. The *CR* Yamabe problem on a strictly pseudonconvex *CR* manifold is analogous to the original Yamabe problem on compact manifolds. As the first step, Jerison and Lee [8] proved a sharp Sobolev inequality on the CR sphere S^{2n+1} . Moreover they classified all extremal functions of the sharp Sobolev inequality. Since S^{2n+1} is CR equivalent to the Heisenberg group via the Cayley transform, their classification can be stated as following.

Theorem 1.1. Let $u \in C^2(\mathbb{H}^n)$ be a solution to equation (1.1) with $p = \frac{Q+2}{Q-2}$ (where Q = 2n+2 is the homogeneous dimension), and suppose $u \in L^{1+p}$. Then

$$u(z,t) = |t + \sqrt{-1}|z|^2 + \mu \cdot z + \lambda|^{-n}, \qquad (1.2)$$

where $\mu \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$, and $Im\lambda > |\mu|^2/4$.

The proof hinges on a complicated and remarkable identity they discovered with the help of a computer program. It is motivated by Obata's classic work [16] in the Riemannian case. When restricted on \mathbb{R}^n , Obata's theorem has the following version.

Theorem 1.2. Let $u \in C^2(\mathbb{R}^n)$ be a positive solution for the following equation

$$-\Delta u = u^{\frac{n+2}{n-2}},\tag{1.3}$$

and suppose $u(x) = O(|x|^{2-n})$ for large |x|. Then

$$u(x) = \left(\frac{\lambda}{|x-x_0|^2 + \lambda^2}\right)^{(n-2)/2}$$

for some $\lambda > 0$ and $x_0 \in \mathbb{R}^n$.

We recall that there is another completely different approach to such classification problems. This is the method of moving plane initiated by Gidas, Ni and Nirenberg [6]. In particular they reproved the above theorem using this method. Later, Caffarelli, Gidas and Spruck [4] classified all positive solutions to equation (1.3) by sharpening the method of moving plane. Their result plays a crucial role in establishing the compactness results for the solution set to Yamabe problem, see, e.g., Schoen [17], Li and Zhu [14],