On Finite Groups Whose Nilpotentisers Are Nilpotent Subgroups

Seyyed Majid Jafarian Amiri¹ and Hojjat Rostami²,*

¹ Department of Mathematics, Faculty of Sciences, University of Zanjan,
P. O. Box 45371-38791, Zanjan, Iran
² Department of Education, Zanjan, Iran.

Received 5 June 2017; Accepted (in second revised version) 31 October 2017

Abstract. Let \(G \) be a finite group and \(x \in G \). The nilpotentiser of \(x \) in \(G \) is defined to be the subset \(\text{Nil}_G(x) = \{ y \in G : [x, y] \text{ is nilpotent} \} \). \(G \) is called an \(N \)-group (\(n \)-group) if \(\text{Nil}_G(x) \) is a subgroup (nilpotent subgroup) of \(G \) for all \(x \in G \setminus Z^*(G) \) where \(Z^*(G) \) is the hypercenter of \(G \). In the present paper, we determine finite \(N \)-groups in which the centraliser of each noncentral element is abelian. Also we classify all finite \(n \)-groups.

AMS subject classifications: 20D60
Key words: Finite group, nilpotentiser, \(N \)-group.

1 Introduction

Consider \(x \in G \). The centraliser, nilpotentiser and engeliser of \(x \) in \(G \) are

\[
C_G(x) = \{ y \in G : [x, y] \text{ is abelian} \}, \quad \text{Nil}_G(x) = \{ y \in G : [x, y] \text{ is nilpotent} \}
\]

and

\[
E_G(x) = \{ y \in G : [y, n x] = 1 \text{ for some } n \}
\]

respectively. Obviously

\[
C_G(x) \subseteq \text{Nil}_G(x) \subseteq E_G(x) \quad \text{for each } x \in G.
\]

Note that \(\text{Nil}_G(x) \) and \(E_G(x) \) are not necessarily subgroups of \(G \). So determining the structure of groups by nilpotentisers (or engelisers) is more complicated than the centralisers. Let \(G \) be a finite group. Let \(1 \leq Z_1(G) < Z_2(G) < \cdots \) be a series of subgroups of \(G \), where \(Z_1(G) = Z(G) \) is the center of \(G \) and \(Z_{i+1}(G) \), for \(i > 1 \), is defined by

\[
\frac{Z_{i+1}(G)}{Z_i(G)} = Z\left(\frac{G}{Z_i(G)} \right).
\]

*Corresponding author. Email addresses: sm_jafarian@znu.ac.ir (S. M. J. Amiri), h.rostami5991@gmail.com (H. Rostami)
Let $Z^*(G) = \bigcup_i Z_i(G)$. The subgroup $Z^*(G)$ is called the hypercenter of G. We say a group is n-group in which $\text{Nil}_G(x)$ is a nilpotent subgroup for each $x \in G \setminus Z^*(G)$.

Now a group is N-group in which the nilpotentiser of each element is subgroup and a CA-group is a group in which the centraliser of each noncentral element is abelian (see [16] or [5]). The class of N-groups were defined and investigated by Abdollahi and Zarrin in [1]. In particular they showed that every centerless CA-group is an N-group.

In this paper, we shall prove the following generalisation of this result.

Theorem 1.1. Let G be a nonabelian CA-group. Then G is an N-group if and only if we have one of the following types:

1. G has an abelian normal subgroup K of prime index.
2. $\frac{G}{Z(G)}$ is a Frobenius group with Frobenius kernel K and Frobenius complement L, where K and L are abelian.
3. $\frac{G}{Z(G)}$ is a Frobenius group with Frobenius kernel K and Frobenius complement L, such that $K = PZ$, where P is a normal Sylow p-subgroup of G for some prime divisor p of $|G|$, P is a CA-group, $Z(P) = P \cap Z$ and $L = HZ$, where H is an abelian p'-subgroup of G.
4. $\frac{G}{Z(G)} \cong \text{PSL}(2,q)$ and $G' \cong \text{SL}(2,q)$ where $q > 3$ is a prime-power number and $16 \nmid q^2 - 1$.
5. $\frac{G}{Z(G)} \cong \text{PGL}(2,q)$ and $G' \cong \text{SL}(2,q)$ where $q > 3$ is a prime and $8 \nmid q \pm 3$.
6. $G = P \times A$ where A is abelian and P is a nonabelian CA-group of prime-power order.

A group is said to be an E-group whenever engeliser of each element of such group is subgroup. The class of E-groups was defined and investigated by Peng in [13,14]. Also Heineken and Casolo gave many more results about them (see [3,4,6]). Now recall that an engel group is a group in which the engeliser of every elements is the whole group. If G is an E-group such that the engeliser of every element is engel, G is an n-group since every finite engel group is nilpotent. This result motivates us to classify all finite n-groups in following theorem.

But before giving it, recall that the Hughes subgroup of a group G is defined to be the subgroup generated by all the elements of G whose orders are not p and denoted by $H_p(G)$ where p is a prime. Also a group G is said to be of Hughes-Thompson type, if for some prime p it is not a p-group and $H_p(G) \neq G$.

Theorem 1.2. Let G be a nonnilpotent group. Then G is an n-group if and only if $\frac{G}{Z^*(G)}$ satisfies one of the following conditions:

1. $\frac{G}{Z^*(G)}$ is a group of Hughes-Thompson type and

$$\left| \text{Nil}_{\frac{G}{Z^*(G)}}(xZ^*(G)) \right| = p$$

for all $xZ^*(G) \in \frac{G}{Z^*(G)} \setminus H_p(\frac{G}{Z^*(G)})$;