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Abstract. In this paper, the existence and stability results for ground state solutions of
an m-coupled nonlinear Schrödinger system

i
∂

∂t
uj+

∂2

∂x2
uj+

m

∑
i=1

bij|ui|p|uj|p−2uj =0,

are established, where 2≤m, 2≤p<3 and uj are complex-valued functions of (x,t)∈R
2,

j=1,··· ,m and bij are positive constants satisfying bij=bji. In contrast with other meth-
ods used before to establish existence and stability of solitary wave solutions where the
constraints of the variational minimization problem are related to one another, our ap-
proach here characterizes ground state solutions as minimizers of an energy functional
subject to independent constraints. The set of minimizers is shown to be orbitally sta-
ble and further information about the structure of the set is given in certain cases.
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1 Introduction

The nonlinear Schrödinger(NLS) equation

iut+uxx±|u|p−2u=0, (1.1)
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where 2 < p and u is a complex function of (x,t) ∈ R2 arises in several applications.
The equation describes evolution of small amplitude, slowly varying wave packets in
a nonlinear media [3]. Indeed, it has been derived in such diverse fields as deep wa-
ter waves [23], plasma physics [24], nonlinear optical fibers [9, 10], magneto-static spin
waves [25], to name a few. The coupled nonlinear Schrödinger (CNLS) system

i
∂

∂t
uj+

∂2

∂x2
uj+

m

∑
i=1

bij|ui|p|uj|p−2uj=0, (1.2)

where 2≤ p < 3, m ≥ 2 and uj are complex-valued functions of (x,t)∈R2, j = 1,2,··· ,m
and bij ∈R, arises physically under conditions similar to those described by (1.1) when
there are m-wave trains moving with nearly the same group velocities [20,22]. The CNLS
system also models physical systems whose fields have more than one components; for
example, in optical fibers and waveguides, the propagating electric field has two compo-
nents that are transverse to the direction of propagation. These types of systems also arise
from physical models in nonlinear optics and in Bose-Einstein condensates for multi-
species condensates (i.e., [15, 21] and references therein). Readers are referred to the
works [3, 9, 10, 15, 21, 23, 24] for the derivation as well as applications of the system (1.2).
With coupling effects in the system, some new features of the solutions structure arise
that do not exist in the single equation (1.1).

Notation. For 1≤ p≤∞, we denote by Lp = Lp(R) the space of all complex-valued

measurable functions f on R for which the norm ‖ f‖p=(
∫

R
| f |pdx)

1
p is finite for 1≤p<∞,

and ‖ f‖∞ is the essential supremum of | f | on R. The space H1
C
(R) is the usual Sobolev

space consisting of measurable functions such that both f and fx are in L2 and we define
the space Xj to be the j-times Cartesian product Xj=H1

C
(R)×H1

C
(R)×···×H1

C
(R). If T>0

and Y is any Banach space, we denote by C([0;T],Y) the Banach space of continuous maps
f : [0,T]−→Y, with norms given by ‖ f‖C([0;T],Y)=sup[0,T]‖ f (t)‖Y .

Review. Global well-posedness for the system (1.2) follows from [6] (see also [16]).
Precisely, it was proved that for any initial data (u1(x,0),u2(x,0),··· ,um(x,0))∈Xm, there
exists a unique solution (u1(x,t),u2(x,t),··· ,um(x,t)) of (1.2) in C(R;Xm) emanating from
(u1(x,0),u2(x,0),··· , um(x,0)), and (u1(x,t),u2(x,t),··· ,um(x,t)) satisfies

E(u1(·,t),u2(·,t),··· ,um(·,t))=E(u1(·,0),u2(·,0),··· ,um(·,0)),
Q(uj(·,t))=Q(uj(·,0)),

where E and Q are the following conserved quantities

E(u1,u2,··· ,um)=
∫

R

( m

∑
j=1

| ∂

∂x
uj(x,t)|2− 1

p

m

∑
i,j=1

bij|ui(x,t)|p|uj(x,t)|p
)

dx,

Q(uj)=
∫

R

|uj(x,t)|2dx,


