Vol. **49**, No. 2, pp. 111-131 June 2016

New Results for the BBM Equation

Hongqiu Chen*

Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee, USA

Received 31 March, 2016; Accepted 15 May, 2016

Abstract. The BBM equation posed on \mathbb{R} and \mathbb{R}^+ is revisited. Improving on earlier results, global well-posedness and bounds for the growth in time of relevant norms of solutions corresponding to very general auxiliary data are derived.

AMS subject classifications: 35Q53, 76B03, 76B15

Key words: BBM equation, local well posedness, global well posedness, quarter plane problem, wave maker problem.

1 Introduction

The regularized long wave equation, or BBM-equation,

$$u_t + u_x - u_{xxt} + uu_x = 0 \tag{1.1}$$

was first introduced by Peregrine [7] to model small amplitude, long waves propagating in one direction. Here u=u(x,t) is a real-valued function defined on $\mathbb{R} \times \mathbb{R}^+$. The equation with initial condition

$$u(x,0) = \varphi(x), \quad \text{for} \quad x \in \mathbb{R}$$
 (1.2)

in the L_2 -based Sobolev space $H^k(\mathbb{R}), k = 1, 2, \cdots$, was first rigorously investigated by Benjamin *et al.* [1], they showed that (1.1)-(1.2) is globally well-posed, the solution $u \in C^{\infty}([0,\infty); H^k(\mathbb{R}))$. Bona-Tzvetkov [6] extended the global well-posedness result for the initial data $\varphi \in H^k(\mathbb{R}), k=1,2,\cdots$, to $H^s(\mathbb{R})$ for all $s \ge 0$. It is worth pointing out that when $0 \le s < 1$, the method they used is high-low frequency decomposition.

While using the high-low frequency approach to show the global well-posedness, the upper bound for the growth in time of the relevant Sobolev norms $||u(\cdot,t)||_{H^s(\mathbb{R})}$ of the solution *u* cannot be obtained. In this paper, a new approach is introduced, so this issue is resolved.

http://www.global-sci.org/jms

©2016 Global-Science Press

^{*}Corresponding author. *Email address:* hchen1@memphis.edu (H. Chen)

Modeling waves generated in a laboratory at Fluid Mechanics Research Institute at the University of Essex, the regularized long-wave, or BBM equation (1.1) reappeared, see Bona-Bryant [2], Bona-Pritchard-Scott [5]. That is to say, the domain of the BBM-equaiton (1.1) is $(x,t) \in \mathbb{R}^+ \times \mathbb{R}^+$. Hence the problem has both initial and boundary condition:

$$u(x,0) = \varphi(x)$$
 and $u(0,t) = g(t)$ for $x,t \ge 0.$ (1.3)

Eq. (1.1) together with (1.3) is some time called the BBM quarter plane problem, or wave maker problem.

Assuming that $g \in C^1(\mathbb{R}^+)$ and $\varphi \in H^1(\mathbb{R}^+) \cap C_b^2(\mathbb{R}^+)$ with compatibility condition $\varphi(0) = g(0)$, Bona-Bryant [2] showed that the Eq. (1.1) with the initial-boundary condition (1.3) is globally well-posed, the solution *u* lies in space $C^1([0,\infty); H^1(\mathbb{R}^+) \cap C_b^2(\mathbb{R}^+))$ and it is a classical solution.

Later, under assumptions that $\varphi = 0$ and $g \in C(\mathbb{R}^+)$ with compatibility g(0) = 0, Bona *et al.* [4] showed that (1.1) & (1.3) is globally well posed, the solution *u* is a member of $C([0,\infty); H^{\infty}(\mathbb{R}^+))$.

Most recently, assuming that $\varphi \in L_2(\mathbb{R}^+)$ and $g \in L^{loc}_{\infty}(\mathbb{R}^+)$ are locally continuous at x, t = 0 with compatibility condition $\varphi(0) = g(0)$, Bona *et al.* [3] showed that the initialboundary-value problem (1.1) & (1.3) is well-posed globally in time, the solution $u \in L^{loc}_{\infty}([0,\infty);L_2(\mathbb{R}^+))$. The method used was high-low frequency as Bona-Tzvetkov introduced in [6]. Hence, there is no estimate on the growth bound in time of the norm $\|u(\cdot,t)\|_{L_2(\mathbb{R}^+)}$ in terms of auxiliary data.

Improving and completing the earlier results, in this paper, new results are summarized in following.

Theorem 1.1. The BBM equation (1.1) post for $(x,t) \in \mathbb{R} \times \mathbb{R}^+$ with the initial condition (1.2) is globally well-posed if the initial data $\varphi \in H^s(\mathbb{R})$ for any $s \ge 0$. Moreover, $u \in C([0,\infty); H^s(\mathbb{R}))$ has the following bounds.

$$\|u(\cdot,t)\|_{H^{s}(\mathbb{R})} \leq c(\|\varphi\|_{H^{s}(\mathbb{R})})(1+t)^{\frac{2}{3}(s-1)+\frac{1}{3}(s-\lfloor s \rfloor)} \text{ if } s \geq 1,$$

$$\|u(\cdot,t)\|_{H^{s}(\mathbb{R})} < c(\|\varphi\|_{L_{2}(\mathbb{R})}, \|\varphi\|_{H^{s}(\mathbb{R})})e^{\|\varphi\|_{L_{2}(\mathbb{R})}t} \text{ if } \frac{1}{4} < s < 1,$$

and

$$\|u(\cdot,t)\|_{H^{s}(\mathbb{R})} \le e^{p_{2}(t)} \quad if \quad 0 \le s \le \frac{1}{4}$$

where $c(\|\varphi\|_{H^s(\mathbb{R})})$, $c(\|\varphi\|_{L_2(\mathbb{R})}, \|\varphi\|_{H^s(\mathbb{R})})$ are constants dependent on $\|\varphi\|_{H^s(\mathbb{R})}$, and $\|\varphi\|_{L_2(\mathbb{R})}$ and $\|\varphi\|_{H^s(\mathbb{R})}$, respectively, $p_2(t)$ is a polynomial function of degree 2 with coefficients only dependent on $\|\varphi\|_{H^s(\mathbb{R})}$.

Theorem 1.2. Considered here is BBM equation (1.1) post for $(x,t) \in \mathbb{R}^+ \times \mathbb{R}^+$ with the initialboundary condition (1.3). If for any given $s \ge 0$, the initial data $\varphi \in H^s(\mathbb{R}^+)$ and it is required to be continuous locally at x=0 when $0 \le s \le \frac{1}{2}$, and if the boundary data $g \in L^{loc}_{\infty}([0,\infty))$ is continuous