Vol. **49**, No. 1, pp. 50-56 March 2016

On \mathfrak{F}_{τ} -s-supplemented Subgroups of Finite Groups

Yuemei Mao^{1,2,*}and Xiaojian Ma¹

¹ School of Mathematics and Computer, University of Datong, Datong 037009, Shanxi, P. R. China

² School of Mathematical Sciences, University of Science and Technology of China, *Hefei* 230026, Anhui, P. R. China.

Received 20 April 2015; Accepted 9 December 2015

Abstract. Let \mathfrak{F} be a non-empty formation of groups, τ a subgroup functor and H a p-subgroup of a finite group G. Let $\overline{G} = G/H_G$ and $\overline{H} = H/H_G$. We say that H is \mathfrak{F}_{τ} -s-supplemented in G if for some subgroup \overline{T} and some τ -subgroup \overline{S} of \overline{G} contained in \overline{H} , $\overline{H}\overline{T}$ is subnormal in \overline{G} and $\overline{H} \cap \overline{T} \leq \overline{S}Z_{\mathfrak{F}}(\overline{G})$. In this paper, we investigate the influence of \mathfrak{F}_{τ} -s-supplemented subgroups on the structure of finite groups. Some new characterizations about solubility of finite groups are obtained.

AMS subject classifications: 20D10, 20D15, 20D20

Key words: Subnormal subgroup, subgroup functor, soluble group.

1 Introduction

Throughout this paper, all groups considered are finite and *G* always denotes a group, π denotes a set of primes and *p* denotes a prime. Let $|G|_p$ denote the order of Sylow *p*-subgroups of *G*. All unexplained notation and terminology are standard, as in [1] and [2].

For a class of groups \mathfrak{F} , a chief factor L/K of G is said to be \mathfrak{F} -central in G if $L/K \rtimes G/C_G(L/K) \in \mathfrak{F}$. A normal subgroup N of G is called \mathfrak{F} -hypercentral in G if either N = 1 or every chief factor of G below N is \mathfrak{F} -central in G. Let $Z_{\mathfrak{F}}(G)$ denote the \mathfrak{F} -hypercentre of G, that is, the product of all \mathfrak{F} -hypercentral normal subgroups of G. We use \mathfrak{N}_p and \mathfrak{S} to denote the classes of all p-nilpotent groups and soluble groups, respectively. It is well known that \mathfrak{N}_p and \mathfrak{S} are all S-closed saturated formations. Following Guo [3], a subgroup functor is a function τ which assigns to each group G a set of subgroups $\tau(G)$ of G satisfying that $1 \in \tau(G)$ and $\theta(\tau(G)) = \tau(\theta(G))$ for any isomorphism $\theta: G \to G^*$. If $H \in \tau(G)$, then H is called a τ -subgroup of G. If τ is a subgroup functor, then τ is said to be

http://www.global-sci.org/jms

©2016 Global-Science Press

^{*}Corresponding author. *Email addresses:* maoym@mail.ustc.edu.cn (Y. Mao), mxj790808@163.com (X. Ma)

- (1) inductive if for any group *G*, whenever $H \in \tau(G)$ is a *p*-group and $N \leq G$, then $HN/N \in \tau(G/N)$.
- (2) hereditary if for group *G*, whenever $H \in \tau(G)$ is a *p*-group and $H \leq E \leq G$, then $H \in \tau(E)$.
- (3) Φ -regular if any primitive group G, whenever $H \in \tau(G)$ is a p-group and N is a minimal normal subgroup of G, then $|G:N_G(H \cap N)|$ is a power of p.

Recall that a subgroup H of G is said to complemented in G if G has a subgroup K such that G = HK and $H \cap K = 1$. A subgroup H of G is said to be supplement in G if there exists a subgroup K such that G = HK. A subgroup H of G is said to be c-supplemented in G [4] if there exists a normal subgroup N of G such that G = HN and $H \cap N \leq H_G$, where H_G is the largest normal subgroup of G contained in H. For a formation \mathfrak{F} , a subgroup H of G is said to be \mathfrak{F} -supplement in G [5] if there exists a subgroup K of G such that G = HK and $(H \cap K)H_G/H_G \leq Z_{\mathfrak{F}}(G/H_G)$, where $Z_{\mathfrak{F}}(G/H_G)$ is the \mathfrak{F} -hypercenter of G/H_G . By using the above supplement subgroups, people have obtain many interesting results (see, for example, [4], [5] and [6]). As a continuation of the above researches, by using Guo-Skiba's method (see [7]), we now introduce the following notion:

Definition 1.1. Let \mathfrak{F} be a non-empty formation of groups, τ a subgroup functor and H a *p*-subgroup of a finite group G. Let $\overline{G} = G/H_G$ and $\overline{H} = H/H_G$. We say that H is \mathfrak{F}_{τ} -s-supplemented in G if for some subgroup \overline{T} and some τ -subgroup \overline{S} of \overline{G} contained in \overline{H} , $\overline{H}\overline{T}$ is subnormal in \overline{G} and $\overline{H} \cap \overline{T} \leq \overline{S}Z_{\mathfrak{F}}(\overline{G})$.

It is clear that *c*-supplemented subgroups and \mathfrak{F} -supplement subgroups are all \mathfrak{F}_{τ} -s-supplemented subgroups. But the following example shows that the converse is not true.

Example 1.1. Let $G = A \rtimes B$, where A is a cyclic group of order 5 and $B = \langle \alpha \rangle \in Aut(A)$ with $|\alpha| = 4$. Put $H = \langle \alpha^2 \rangle$. Since |G:HA| = 2, HA is normal in G. It is easy to see that $H_G = Z_{\infty}(G) = 1$. If $H_{sG} \neq 1$, then by [8, Lemma A], $O^2(G) \leq N_G(H_{sG})$ and so $H_{sG} \leq G$, which is impossible. Hence $H_{sG} = 1$. Let $\tau(G)$ be the set of all S-quainormal subgroups of G. If $S \leq H$ and $S \in \tau(G)$, then $S \leq H_{sG} = 1$. Hence H is \mathfrak{F}_{τ} -s-supplemented in G. But H is not \mathfrak{F} -supplement in G. Assume that H is \mathfrak{F} -supplement in G, and so H is complemented in G, and so H is complemented in B. This contradicts that B is cyclic. Therefore, H is not \mathfrak{F} -supplement in G. Clearly, $O_2(G) = 1$, so H is not \mathfrak{c} -supplement in G.

In this paper, we investigate the influence of the \mathfrak{F}_{τ} -s-supplemented subgroups on the structure of finite groups. Some new results of soluble groups are obtained.

2 Preliminaries

Lemma 2.1. [9, Lemma 2.5] *Let U be a subnormal subgroup of G.*