Composite Implicit Iteration Process for Asymptotically Hemi-Pseudocontractive Mappings

Ling Luo and Weiping Guo *

School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, P. R. China.

Received 22 December, 2014; Accepted 6 November, 2015

Abstract. In Banach space, the composite implicit iterative process for uniformly L-Lipschitzian asymptotically hemi-pseudocontractive mappings are studied, and the sufficient and necessary conditions of strong convergence for the composite implicit iterative process are obtained.

AMS subject classifications: 47H09, 47J05, 47J25

Key words: Asymptotically hemi-pseudocontractive mapping, fixed point, composite implicit iterative scheme, Banach space.

1 Introduction and preliminaries

Throughout this work, we assume that E is a real Banach space. E^* is the dual space of E and $J:E \to 2^{E^*}$ is the normalized duality mapping defined by

$$J(x) = \{ f \in E^*: <x,f> = \|x\| \|f\|, \|f\| = \|x\| \}, \quad \forall x \in E,$$

where $<\cdot,\cdot>$ denotes duality pairing between E and E^*. A single-valued normalized duality mapping is denoted by j.

Let C be a nonempty subset of E and $T:C \to C$ a mapping, we denote the set of fixed points of T by $F(T) = \{ x \in C; Tx = x \}$.

Definition 1.1. ([1]) T is said to be asymptotically nonexpansive, if there exists a sequence $\{k_n\} \subset [1,\infty)$ with $\lim_{n \to \infty} k_n = 1$ such that

$$\|T^n x - T^n y\| \leq k_n \|x - y\|, \quad \forall x, y \in C \text{ and } n \geq 1.$$

*Corresponding author. Email addresses: guoweiping18@aliyun.com (W. Guo), luoling19901120@163.com (L. Luo)
(2) ([2]) \(T \) is said to be uniformly \(L \)-Lipschitzian, if there exists \(L > 0 \) such that
\[
\|T^nx - T^ny\| \leq L\|x - y\|, \quad \forall x, y \in C \text{ and } n \geq 1.
\]

(3) ([3]) \(T \) is said to be asymptotically pseudocontractive, if there exists a sequence \(\{k_n\} \subset [1, \infty) \) with \(\lim_{n \to \infty} k_n = 1 \), for any \(x, y \in C \), there exists \(j(x - y) \in J(x - y) \) such that
\[
\langle T^n x - T^n y, j(x - y) \rangle \leq k_n \|x - y\|^2, \quad n \geq 1.
\]

(4) ([4]) \(T \) is said to be asymptotically hemi-pseudocontractive, if \(F(T) \neq \emptyset \) and there exists a sequence \(\{k_n\} \subset [1, \infty) \) with \(\lim_{n \to \infty} k_n = 1 \) such that, for any \(x \in C \) and \(p \in F(T) \), there exists \(j(x - p) \in J(x - p) \) such that
\[
\langle T^n x - p, j(x - p) \rangle \leq k_n \|x - p\|^2, \quad n \geq 1.
\]

Remark 1.1. It is easy to see that if \(T \) is an asymptotically nonexpansive mapping, then \(T \) is a uniformly \(L \)-Lipschitzian and asymptotically pseudocontractive mapping, where \(L = \sup_{n \geq 1} \{k_n\} \); if \(T \) is an asymptotically pseudocontractive mapping with \(F(T) \neq \emptyset \), then \(T \) is an asymptotically hemi-pseudocontractive mapping.

Let \(C \) be a nonempty closed convex subset of \(E \) and \(T : C \to C \) be a uniformly \(L \)-Lipschitzian asymptotically hemi-pseudocontractive mapping, for any given \(x_1 \in C \), we introduce a composite implicit iteration process \(\{x_n\} \) as follows:
\[
\begin{cases}
 x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^nx_n, \\
 y_n = (1 - \beta_n)x_n + \beta_n T^nx_{n+1},
\end{cases}
\quad \forall n \geq 1,
\tag{1.1}
\]
where \(\{\alpha_n\}, \{\beta_n\} \) are two real sequences in \([0,1]\).

As \(\beta_n = 0 \) for all \(n \geq 1 \), then (1.1) reduces to
\[
x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^nx_n.
\tag{1.2}
\]

Remark 1.2. For any given \(x_1 \in C \), define the mapping \(A_n : C \to C \), such as:
\[
A_n x = (1 - \alpha_n)x_n + \alpha_n T^n[(1 - \beta_n)x_n + \beta_n T^n x], \quad \forall x \in C,
\]
where \(C \) is a nonempty closed convex subset of \(E \) and \(T : C \to C \) is a uniformly \(L \)-Lipschitzian. Then
\[
\|A_n x - A_n y\| = \|\alpha_n(T^n[(1 - \beta_n)x_n + \beta_n T^n x] - T^n[(1 - \beta_n)x_n + \beta_n T^n y])\| \\
\leq \alpha_n \beta_n L \|T^n x - T^n y\| \\
\leq \alpha_n \beta_n L^2 \|x - y\|
\]
for all \(x, y \in C \). Thus \(A_n \) is a contraction mapping if \(\alpha_n \beta_n L^2 < 1 \) for all \(n \geq 1 \), and so there exists a unique fixed point \(x_{n+1} \in C \) of \(A_n \), such that \(x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T^n[(1 - \beta_n)x_n + \beta_n T^n x_{n+1}] \). This shows that the composite implicit iteration process (1.1) is well defined.