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Abstract. We present a local convergence analysis for higher order methods in order
to approximate a locally unique solution of an equation in a Banach space setting. In
earlier studies, Taylor expansions and hypotheses on higher order Fréchet-derivatives
are used. We expand the applicability of these methods using only hypotheses on the
first Fréchet derivative. Moreover, we obtain a radius of convergence and computable
error bounds using Lipschitz constants not given before. Numerical examples are also
presented in this study.
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1 Introduction

In this study, we are concerned with the problem of approximating a locally unique so-
lution x∗ of the nonlinear equation

F(x)=0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach
space X with values in a Banach space Y. Denote by L(X,Y) the space of bounded linear
operators from X into Y.

A lot of problems from Computational Sciences and other disciplines can be brought
in the form of Eq. (1.1) using Mathematical Modeling [2, 5, 10, 17, 22]. The solution of
these equations can rarely be found in closed form. That is why the solution methods for
these equations are iterative. In particular, the practice of numerical analysis for finding
such solutions is essentially connected to variants of Newton’s method [1–22].
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The study about convergence matter of iterative procedures is usually based on two
types: semi-local and local convergence analysis. The semi-local convergence matter is,
based on the information around an initial point, to give conditions ensuring the conver-
gence of the iterative procedure; while the local one is, based on the information around
a solution, to find estimates of the radii of convergence balls. There exist many studies
which deal with the local and semi-local convergence analysis of Newton-like methods
such as [1–22]. In order to obtain a higher order of convergence, Newton-like methods
have been studied such as Potra-Ptak, Chebyshev, Cauchy, Halley and Ostrowski, meth-
ods [2, 5, 16, 22]. The number of function evaluations per step increases with the order of

convergence. In the scalar case the efficiency index [16,22] EI=p
1
m provides a measure of

balance where p is the order of the methods and m is the number of function evaluations.
We study the local convergence of the two-step methods defined for each n=0,1,2...

by

yn = xn−ΘF′(xn)
−1F(xn),

xn+1= xn−
1

2
F′(xn)

−1F(xn)+(F′(xn)−3F′(yn))
−1F(xn) (1.2)

and

yn = xn−ΘF′(xn)
−1F(xn),

xn+1= xn−H(xn,yn)F′(xn)
−1F(xn) (1.3)

where x0 is an initial point, Θ∈R a parameter and H : X2 → L(X,Y) a given continuous
operator. Method (1.2) was studied by Basu in [7], when X =Y = R

m and Θ = 2
3 . The

method (1.2) was shown to be of order four using Taylor expansions and hypotheses
reaching up to the sixth derivative of F. Notice that method (1.2) is really a particular
case of Jarratt’s method [2, 5, 16, 22]. Moreover, method (1.3) was studied by Chun et al.
in [8] the same way. This method is also of order four assuming that function H satisfies
certain initial conditions [8]. The case H(xn,yn)= F′(xn)−1F(yn) was also studied in [8]
(see also our Remark 2.3 (6)). Method (1.2) uses two inverses and one function evaluation.
Two-step Newton methods comparable to method (1.2) are given by

yn = xn−F′(xn)
−1F(xn),

xn+1=yn−F′(yn)
−1F(xn) (1.4)

or

yn = xn−F′(xn)
−1F(xn),

xn+1=yn−F′(yn)
−1F(yn). (1.5)

Method (1.4) uses two inverses and one function evaluation (so does method (1.2)) but it
is of order three. Moreover, method (1.5) uses two inverses and two function evaluations


