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Abstract. This paper deals with numerical methods for the Maxnear criterion of multiple-
sets canonical analysis. Optimality conditions are derived. Upper and lower bounds
of the optimal objective function value are presented. Two iterative methods are pro-
posed. One is an alternating variable method, and the other called Gauss-Seidel method
is an inexact version of the alternating variable method. Convergence of these meth-
ods are analyzed. A starting point strategy is suggested for both methods. Numerical
results are presented to demonstrate the efficiency of these methods and the starting
point strategy.
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1 Introduction

Since Hotelling [3,4] proposed canonical correlation analysis (CCA) as the method for
describing the relation between the scores of a set of observation units on two groups of
variables, CCA has become an important method in multivariate statistics. It has been
widely applied in the econometrics, signal processing, biology, artificial intelligence, and
other fields. Several generalizations of canonical correlation analysis for multiple-sets
have been proposed by Kettenring [6], Van de Geer [7], Hanafi and Kiers [1] and other
scholars. In this paper, we shall concern ourselves with the Maxnear criterion proposed
by Van de Geer [7], which can be introduced briefly as follows.

Let yi =(yi,1,. . .,yi,ni
)T,i= 1,.. .,m be m-sets of random variables. Considering zi(t)=

tT
i yi,ti ∈ R

ni , which is the linear combination of yi,1,. . .,yi,ni
, the basic idea of canonical

correlation analysis is finding t1,. . .,tm so as to optimize some functions of correlations or
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covariances of z1(t),. . .,zm(t). Therefore, given the covariance matrix A of y=(y1,. . .,ym)
T,

partitioned as
A=(Aij)m×m,Aii∈R

ni×ni ,

where Aii is the covariance matrix of yi, and Aij(i 6= j) is the covariance matrix between
yi and yj . Suppose A is symmetric and positive definite in the following, and let

n=n1+ . . .+nm, D=diag(A11,. . .,Amm).

The Maxnear criterion can be described as the following optimization problem:

min xT(mD−A)x, s.t. x∈Σm, (1.1)
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Next, we briefly present a statistical property of Maxnear. Because the matrix A is sym-
metric and positive definite, it can be factorized as follows:

A=PTP, P=[P1,. . .,Pm], Pj∈R
n×nj .

Noting that

Var(yT
i xi−yT

j xj)=Var(yT
i xi)+Var(yT

j xj)−2cov(yT
i xi,y

T
j xj)

= xT
i Aiixi+xT

j Ajjxj−2xT
i Aijxj,

adding them up, we have

m

∑
i,j=1

Var(yT
i xi−yT

j xj)

=2mxTDx−2xT Ax=2xT(mD−A)x.

Hence, the Maxnear is equivalent to the following optimization problem:

min
m

∑
i,j=1

Var(yT
i xi−yT

j xj), s.t. x∈Σm. (1.2)

In this paper, we mainly concentrate on developing efficient algorithm for Maxnear.
In fact, lacking of efficient methods is one obstacle of applying Maxnear in practice. All
general-purpose optimization algorithms applying to (1.1) are mainly centered around
satisfying the first-order necessary condition(see Theorem 2.1 below). Without the global
minimizer, the canonical correlation would not be established, making the statistical pre-
diction less reliable. For general m≥2, several remarks about (1.1) are in order.


