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Abstract. The linear finite element approximation of a general linear diffusion prob-
lem with arbitrary anisotropic meshes is considered. The conditioning of the resultant
stiffness matrix and the Jacobi preconditioned stiffness matrix is investigated using a
density function approach proposed by Fried in 1973. It is shown that the approach can
be made mathematically rigorous for general domains and used to develop bounds on
the smallest eigenvalue and the condition number that are sharper than existing esti-
mates in one and two dimensions and comparable in three and higher dimensions. The
new results reveal that the mesh concentration near the boundary has less influence on
the condition number than the mesh concentration in the interior of the domain. This
is especially true for the Jacobi preconditioned system where the former has little or
almost no influence on the condition number. Numerical examples are presented.
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1 Introduction

Mesh adaptation is a common tool for use in the numerical solution of partial differen-
tial equations (PDEs) to enhance computational efficiency. It often results in nonuniform
meshes whose elements vary significantly in size and shape from place to place on the
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physical domain. Nonuniform meshes could lead to ill-conditioned linear systems and
their solution may deteriorate the efficiency of the entire computation. It is thus im-
portant in practice as well as in theory to understand how mesh nonuniformity affects
the conditioning of linear systems resulting from discretization of PDEs on nonuniform
meshes.

The issue has been studied by a number of researchers mostly for the linear finite
element approximation of the Laplace operator or a general diffusion operator by devel-
oping bounds on the extremal eigenvalues on the resultant stiffness matrix, e.g., see [4,
6, 7, 13–15] for second-order elliptic PDEs or [2, 3, 9] for a more general setting of elliptic
bilinear forms on Sobolev spaces of real index m∈ [−1,1].

The estimation of the largest eigenvalue is well understood and it is easy to show
that the largest eigenvalue is bounded by a multiple (with a constant depending on mesh
connectivity) of the maximum of the largest eigenvalues of the local stiffness matrices [7].
Moreover, the largest diagonal entry of the stiffness matrix is a good estimate for the
largest eigenvalue: it is tight within a factor of d+1 for any mesh, where d is the dimen-
sion of the physical domain [13]. Sharp estimates in terms of mesh geometry are available
for both isotropic [3, 6, 9, 14] and anisotropic [13] diffusion.

The estimation of the smallest eigenvalue is more challenging. Currently there are
two approaches for this purpose. The first approach utilizes Sobolev’s inequality and was
first used by Bank and Scott [4] for the Laplace operator with isotropic meshes in d≥ 2
dimensions. They developed a lower bound on the smallest eigenvalue of a diagonally
scaled stiffness matrix and showed that the condition number of the scaled stiffness ma-
trix is comparable to that with a uniform mesh. A similar result for elliptic bilinear forms
on Sobolev spaces of real index m∈[−1,1] with shape-regular meshes in d≥2 dimensions
was derived by Ainsworth, McLean, and Tran [2,3]. Their result was later generalized to
locally quasi-uniform meshes† in d≥3 dimensions by Graham and McLean [9]. Recently,
Kamenski, Huang, and Xu [13] derived a similar bound for second-order elliptic PDEs
which is valid for arbitrary meshes (i.e., without imposing any conditions on the mesh
regularity) for any d; the established bound for the condition number depends on three
factors, one representing the condition number of the linear finite element equations for
the Laplace operator on a uniform mesh and the other factors arising from the nonunifor-
mity of the mesh viewed in the metric specified by the inverse of the diffusion matrix D

(D−1-nonuniformity) and the mesh nonuniformity in volume measured in the Euclidean
metric (volume-nonuniformity). Further, it was shown in [13] that the Jacobi precondi-
tioning — an optimal diagonal scaling for a symmetric positive definite sparse matrix
— eliminates the effect of the mesh volume-nonuniformity and reduces the effect of the
mesh D

−1-nonuniformity. This result can be seen as a further generalization of [3, 4, 9]
towards arbitrary anisotropic meshes and general diffusion coefficients.

In the second approach (hereafter referred to as the density function approach), a lower
bound on the smallest eigenvalue of the stiffness matrix is obtained through a lower

†They are meshes where neighboring elements always comparable size and shape.


