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Abstract: For better performance, efficient numerical methods describing physical behaviour of clothes are 
needed for any cloth simulation system. In this paper we report a quantitative research performed on the 
stability of the most widely used integration techniques in cloth simulation. Advantages and weaknesses of 
various integration techniques are listed for trade-off among stability, accuracy and speed. In this light, we 
offer a solution for choosing numerical methods when dealing with simulation problems.  
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1. Introduction 
 
The physical model employed is of essential 
importance in the design of a stable cloth simulation 
system. Among the available models, there are 
continuous models [1] and discrete models [2]. Among 
which, the mass-spring system is widely-used [3] since 
it is the most intuitive and simple model for efficient 
animation of clothes. The mass-spring model assumes 
that a cloth is composed of mass-points and springs. 
Each spring connects two mass points, and the 
structure of the spring connection is based on the 
geometry topology of the cloth mesh. The motion of 
the cloth is determined by interactive forces between 
the masses. The modeling requires numerically solving 
an ordinary differential equation (ODE) system as 
illustrated in Eq. 1. In order to obtain the evolution of 
cloth animation along time, the numerical system has 
to be integrated numerically. Various numerical 
integration methods are available for this task. 
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  The main concern of our work is to briefly review 
the integration techniques. The algorithms are analyzed 
in Section 3. Section 4 shows experimental results of 
the integration methods. Finally, conclusions are drawn 
from the experimental results. 
 
2. Related work 
 
According to Volino et al. [4], integration techniques 
are classified into four major categories: explicit 

methods, implicit methods, low-order methods and 
high-order methods. Provot [3] used explicit Euler 
method to integrate the Newton equation and obtain the 
positions and velocities at all instances of time. As 
stated by Baraff and Witkin [5] explicit methods are 
ill-suited to solve stiff equations because they require 
many small steps to stably advance the simulation 
forward in time. Therefore the iteration times are 
increased dramatically slowing down the simulation 
procedure. The 4th order Runge-Kutta method is often a 
better compromise between accuracy and speed. For 
higher order methods, the stability is poor for 
non-linear condition. They cannot efficiently handle 
situation with collision detection and response. In order 
to increase the stability, the stiffness of the system has 
to be lowered down which causes artifacts namely the 
so-called “Super Elasticity”.  
  Pioneered by Baraff and Witkin [5], implicit 
integrations have been widely used for cloth simulation 
because the stability is better than the explicit methods. 
In their approach, modified conjugate gradient (CG) 
method was used to alleviate the computation. In order 
to increase the speed, Desbrun et al. [6] make some 
approximations in implicit technique alleviating the 
burden to solve the linear system by precomputed filter. 
It did speed up the simulation however it still suffers 
from heavy computation because the inverse matrix 
may not be sparse. Based on this work Kang et al. [7] 
did some further simplification to eliminate solving the 
linear system. Nevertheless the physical correctness 
was not considered. Specific materials may not be 
modeled correctly in this way. Eberhardt et al. [8] 
proposed the use of IMEX (implicit-explicit) methods 
to solve the arising problems. IMEX methods split 
ODEs (ordinary differential equations) into stiff parts 
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and non-stiff parts solved by implicit and explicit 
integration respectively. The criteria for evaluating 
integration techniques are convergence, accuracy, 
stability and efficiency [9]. Various integration methods 
have been compared with regard to their speed, 
accuracy and efficiency [4,10,11]. 
  A post correction method was used to restrict the 
spring elongations to a maximum value [3,6,12]. 
Unfortunately physical soundness is not guaranteed by 
this modification. Baraff and Witkin [5] proposed a 
very efficient method to enforce constraints in a CG 
method. The acceleration is filtered at the constrained 
direction under each iteration by mass modification. 
However these methods did not present how to 
determine the order in which the springs are adjusted. 
The result of the inverse dynamics process is highly 
dependent on this order. Tsiknis et al. [13] proposed an 
order-independent method for strain limiting using 
element-by-element creating a disjoint set of particles 
then stitch them together. In order to speed up massive 
simulation, the author adopted physics-aware 
subdivision scheme.  
 
3. Algorithms 
 
3.1 Physical model of garment 
 
  The present work employs a mass-spring system [3] 
for garments based on triangular mesh. Tension-shear 
springs and bend springs are constructed according to 
the topology of the mesh. Each edge of the triangular 
mesh that connected two vertices is treated as springs 
for tension and shearing, and the line that connected 
two vertices across each edge is considered as bending 
spring as illustrated in Figure 1.  
 

 

 
Figure 1 Mass-spring system with Tension-Shear. 

springs (solid lines), and bending springs (dash lines). 
 

  The forces exerted on the masses are classified into 
external forces and internal forces. External force 

exF of each particle including omnipresent gravity and 
air resistance is expressed as 
 

 ( )ex i im a b= +F g + v v  . 
 
where m denotes mass of each particle, g  is 
acceleration of gravity, a represents linear air resistance 
coefficient and b is quadric air resistance coefficient, 

iv  is velocity of ith mass. 
Internal force inter

ijF are caused by non-linear springs 
between two masses i and j at position ix and jx in 
the form of: 
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ijk denotes elastic modulus of this spring and ijl is its 

rest length. ijd  is damping coefficient. The type of 
spring determines its spring constant. Structural springs 
usually possess higher spring constant values than 
shear and bending ones. Damping forces are added to 
account for energy dissipation due to internal friction. 
These forces damp out the garment’s kinetic energy 
according to its relative velocity. The most popular 
model used as damping force d

ijF  of each particle is 
 
 ( )d

ij ij i jd= − −F v v . 
 
  The linear terms are particularly suited for numerical 
integration. In order to overcome the artifacts caused 
by high damping forces, we rectify the damping model 
according to the method reported by Hauth et al [9]. 
The linear damping force was projected onto the 
direction of the spring to alleviate this phenomenon. 
Random sequential order has been taken which 
mitigates the order-dependent problems from this point 
of view.  
 
3.2 Numerical methods 
 
  To animate the mass-spring model mentioned above 
the numerical integration methods are needed for 
computing the new velocity and position. The 
numerical integrators considered in this study are 
explicit Euler, Symplectic, Midpoint, RK4, Verlet, 
implicit method [5] and Semi-implicit method [6]. The 
algorithms are as follows: Explicit Euler methods are 
described in Eq.2 [3]. The accuracy of this method is 
( )2O h . 
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