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Abstract

For the stationary Wigner equation with inflow boundary conditions, the numerical

convergence with respect to the velocity mesh size are deteriorated due to the singularity

at velocity zero. In this paper, using the fact that the solution of the stationary Wigner

equation is subject to an integral constraint, we prove that the Wigner equation can be

written into a form with a bounded operator B[V ], which is equivalent to the operator

A[V ] = Θ[V ]/v in the original Wigner equation under some conditions. Then the discrete

operators discretizing B[V ] are proved to be uniformly bounded with respect to the mesh

size. Based on the theoretical findings, a singularity-free numerical method is proposed.

Numerical results are provided to show our improved numerical scheme performs much

better in numerical convergence than the original scheme based on discretizing A[V ].
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1. Introduction

The Wigner transport equation is one of the equivalent formulations of quantum mechanics.

It is proposed by E. Wigner in 1932 as a quantum correction to the classical statistical mechanics

[26]. Though the Wigner function may take negative values, it has a non-negative marginal

distribution and can express system observables in the same way as the Boltzmann probability

density function, thus it is called a quasi-probability density function. The strong similarity

between the Wigner equation and the Boltzmann equation makes it convenient to borrow some

describing tools of the latter, e.g., the boundary conditions and the scattering terms [7].

The Wigner equation has been used in many fields. For example, Frensley successfully

reproduced the negative differential resistance phenomena of resonant tunneling devices by

numerically solving the following one-dimensional Wigner equation

∂f

∂t
+ v

∂f

∂x
−Θ[V ]f = 0, x ∈ (−l/2, l/2), v ∈ R, (1.1)

with inflow boundary conditions

f(−l/2, v) = fL(v), if v > 0; f(l/2, v) = fR(v), if v < 0. (1.2)
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Θ[V ] is a pseudo-differential operator that will be explained later. Since then, the Wigner equa-

tion has attracted many researchers in numerical simulation (e.g., [14] and references therein),

and various numerical methods for the Wigner equation have been proposed, such as finite

difference methods [4, 8, 12, 13], spectral methods [4, 22, 25], spectral element method [25], and

Monte Carlo methods [20, 24]. When the Hartree potential is included, the Wigner-Poisson

system can be solved self-consistently [2, 5, 11, 17, 28]. The nonlinear iteration for the coupled

Wigner-Poisson system deserves a serious study and in [4] the Gummel method and the Newton

method were compared for the RTD simulation in terms of efficiency, accuracy and robustness.

As for the linear stationary Wigner equation with inflow boundary boundary conditions, there

are still a lot of open problems, for example, the well-posedness, the numerical convergence,

etc. In this paper, we focus on the linear problem.

Many mathematicians have been drawn to study the Wigner equation, e.g., [9,10,18,19,21].

The Wigner boundary value problem (the stationary Wigner equation with inflow boundary

conditions) is a popular model in numerical simulation of the nano semiconductor devices.

We note that some researchers have proved the well-posedness of the Wigner boundary value

problem in some special cases, for example, [1] for a velocity semi-discretization version, [3] for

an approximate problem by removing a small interval centered at velocity zero, and [15] for

a periodical potential. However, it is reported that the Wigner boundary value problem may

have more than one solution [23], though the authors have not given an exact definition of the

solution by specifying a solution space.

Before the well-posedness issue of some problem is solved, one has to assume that there

exists a unique smooth solution when designing some high-order numerical methods, for ex-

ample, second-order upwind scheme [11, 12]. In this paper, we focus on designing a numerical

scheme, thus we assume that the Wigner boundary value problem has a unique solution in

CLip(−l/2, l/2;L2(Rv)) of all functions which are Lipschitz continuous with the position vari-

able x and belong to L2(Rv) at any fixed x. It seems not to be a very strong constraint in

the quantum transportation, especially when the potential function V (x) is a smooth function.

When one discretizes the Wigner boundary value problem as Frensley did in [8], it is found that

the numerical solution does not converge as the velocity mesh size goes to zero. The reason that

one fails in obtaining a numerical convergence can be partially explained from the fact that the

norm of the discretization operator A[V ] = 1
vΘ[V ] as a linear operator on L2(Rv) increases to

infinite as the velocity mesh size goes to zero. We are trying to solve this issue.

By observing the stationary Wigner equation (1.1) and taking the limit as v goes to 0,

we find that the solution in CLip(−l/2, l/2;L2(Rv)) has a property that it is in a subspace

S(x) ⊂ L2(Rv) where

S(x) =
{
φ ∈ L2(Rv)) : (φ, Vw(x, ·)) = 0

}
, ∀x ∈ (−l/2, l/2).

Restricting our problem in CLip(−l/2, l/2;S(x)) is a natural idea to solve the problem, but it

is hard technically to keep the numerical solutions in the subspace S(x) for all x ∈ (−l/2, l/2)

since the subspace changes with the position variable x. So we extend the A[V ] to L2(Rv),
which does not change with the position variable. However, a natural and simple extension

results in an unbounded operator A[V ] on L2(Rv). In this paper, we give another extension

by defining a new operator B[V ]f(x, v) = 1
v (Θ[V ]f(x, v)−Θ[V ]f(x, 0)). We will prove that

B[V ] = A[V ] on the subspace S, but is bounded on L2(Rv). We obtain our new numerical

method by discretizing B[V ] (bounded on L2(Rv)) instead of A[V ] (unbounded on L2(Rv)),
and numerical convergence of our new method is validated by a numerical example.


