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Abstract

A stochastic approximation (SA) algorithm with new adaptive step sizes for solving

unconstrained minimization problems in noisy environment is proposed. New adaptive

step size scheme uses ordered statistics of fixed number of previous noisy function values

as a criterion for accepting good and rejecting bad steps. The scheme allows the algo-

rithm to move in bigger steps and avoid steps proportional to 1/k when it is expected that

larger steps will improve the performance. An algorithm with the new adaptive scheme is

defined for a general descent direction. The almost sure convergence is established. The

performance of new algorithm is tested on a set of standard test problems and compared

with relevant algorithms. Numerical results support theoretical expectations and verify

efficiency of the algorithm regardless of chosen search direction and noise level. Numeri-

cal results on problems arising in machine learning are also presented. Linear regression

problem is considered using real data set. The results suggest that the proposed algorithm

shows promise.
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1. Introduction

The main aim of the paper is to propose and analyse a new algorithm with adaptive step

sizes for solving stochastic optimization problems. The problem under our consideration is an

unconstrained minimization problem in noisy environment,

min
x∈Rn

f(x), (1.1)

where f : Rn → R is a continuously differentiable, possibly nonconvex function bounded below

on R
n. We assume that only noisy observations of the objective function f(x) and its gradient
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∇f(x) = g(x) are available for all x ∈ R
n. Denote by ξ and ε random variable and random

vector, respectively, defined on a probability space (Ω,F , P ). The noisy function and noisy

gradient at each x ∈ R
n, in this set-up, are given by

F (x) = f(x) + ξ and G(x) = g(x) + ε, (1.2)

where ξ and ε represent the random noise terms. Also, we denote by x∗ ∈ R
n a stationary point

of f(x) in (1.1), that is g(x∗) = 0. Throughout the paper we will use the following notation

Fk = F (xk) = f(xk) + ξk = fk + ξk

Gk = G(xk) = g(xk) + εk = gk + εk, (1.3)

where xk is kth iteration. Index k used with ε and ξ allows us to consider the cases when the

noise-generating process may change with k. We will refer the standard deviation of the noise

term ε as noise level.

The most common method for solving problem (1.1) is Stochastic Approximation (SA) algo-

rithm proposed by Robbins and Monro, [16]. It is introduced for finding roots of one-dimensional

nonlinear scalar function and later extended to multidimensional systems by Blum, [2]. Iter-

ative rule of SA algorithm is motivated by the gradient direction method and uses only noisy

gradient observations. For a given initial iteration x0, iterative rule is given by the formula

xk+1 = xk − akGk, (1.4)

where ak > 0 is a step size and Gk is the noisy gradient at xk defined by (1.3). The sequence

{ak} is called the sequence of step size lengths or gain sequence. The convergence of SA method

is achievable in a stochastic sense under certain assumptions. Robbins and Monro established

mean square (m.s.) convergence, [16], while almost sure (a.s.) convergence is established by

Chen, [7] and Spall, [18]. They proved that method (1.4) converges to a solution of the system

g(x) = 0.

The performance of SA method depends mostly on the choice of the step size sequence.

Numerous modifications of SA algorithm based on the step size selection are proposed to im-

prove the optimization process. Kesten, [9], proposed an accelerated SA algorithm, for one

dimensional case, with the step sizes that depend on the frequency of sign changes of the differ-

ences between two successive iterations. The a.s. convergence of the accelerated SA algorithm

is established. The method is extended for multidimensional problems and a.s. convergence

is proved by Delyon and Juditsky, [8]. Idea of monitoring sign is further studied by Xu and

Dai, [21]. An algorithm with adaptive step sizes is proposed by Yousefian et al., [22] where

authors propose a scheme for minimizing strongly convex differentiable functions in noisy en-

vironment. The scheme generates a step size sequence that is a decreasing piecewise-constant

function with a decrease that occurs when a suitable threshold error is met. SA algorithm

with a line-search is proposed by Krejić et al., [10]. A line search along the negative gradient

direction is applied while the iterates are far away from the solution and upon reaching some

neighbourhood of the solution the method switches to SA rule. Approach in [10] is recently

extended to general descent direction case by Krejić et al., [11]. This result allows application of

faster, second-order methods while keeping the almost sure convergence. Algorithms that use

second-order directions are frequently applied for solving large-scale problems in machine learn-

ing. SA algorithm with a quasi-Newton direction is successfully applied in [4–6]. A stochastic

quasi-Newton method for solving nonconvex stochastic optimization problems is also proposed
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in [19]. An adaptive step size algorithm with a general descent direction is recently proposed

by Kresoja et al., [12]. The algorithm adjust steps sizes based on an interval around the mean

of fixed number of previously observed noisy function values.

In this paper we propose a SA algorithm with a new adaptive step size scheme. Motivated

by the scheme proposed in [12], we suggest a new criterion for the step size adoption which also

uses only noisy function values. The new criterion is formed using a minimum and a maximum

instead of mean of previous noisy function values and can be applied without knowing the true

or estimated value of the noise level. The algorithm uses a general descent direction as search

direction. Almost sure convergence is established, and numerical experiments are conducted.

The paper is organized as follows. Section 2 contains a brief overview of SA algorithms

with gradient and descent direction separately, along with some of the existing stochastic ap-

proximation algorithms with adaptive step sizes. The detailed description and analysis of the

new step size scheme, the corresponding algorithm, and the convergence analysis of the pro-

posed algorithm are presented in Section 3. In Section 4, practical implementation issues are

discussed and results from the numerical experiments are given. The method is tested using

both, synthetic and real data. The conclusions are drawn in Section 5.

2. Preliminaries

2.1. Stochastic Approximation with Gradient Direction

In this subsection we will review the conditions for almost sure convergence of SA algorithm

(1.4). The convergence conditions for the sequence {ak} are the following

ak > 0,
∑

k

ak = ∞ and
∑

k

a2k < ∞. (2.1)

The conditions (2.1) imply that the step size sequence should not decay neither too fast,

nor too slow. One of the most used sequence is generalization of scaled harmonic sequence,

ak =
a

(k + 1 +A)α
, (2.2)

where a > 0, A ≥ 0 and 0.5 < α ≤ 1.

Denote by {xk} a sequence generated by SA method (1.4) and by Fk the σ-algebra gener-

ated by x0, x1, . . . , xk. The set of standard assumptions which ensures the convergence of SA

algorithm is the following, [7].

A1 For any ε > 0 there exists βε > 0 such that

inf
||x−x∗||>ε

(x− x∗)T g(x) = βε > 0.

A2 The observation noise (εk,Fk+1) is a martingale difference sequence with

E(εk|Fk) = 0 and E[||εk||2] < ∞ a.s for all k,

where {Fk} is a family of non-decreasing σ-algebras.

A3 There exists a constant c > 0 such that

||g(x)||2 + E(||εk||2|Fk) ≤ c(1 + ||x− x∗||2) a.s. for all k and x ∈ R
n.
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Assumption A1 is the strong condition on the shape of g(x), while the assumption A2 represents

a classical zero mean condition in stochastic analysis. Under assumption A2, Gk(x) is an

unbiased estimator of the true gradient g(x). Assumption A3 provides restrictions on the

magnitude of g(x), i.e. ‖g(x)‖2 and the second moment of observation noise cannot grow faster

than a quadratic function of x.

Finally, we state the main convergence result for SA method.

Theorem 2.1. ([7]) Assume that A1-A3 hold. Let {xk} be a sequence generated by SA method

(1.4), where the gain sequence {ak} satisfies the conditions (2.1). Then the sequence {xk}
converges to x∗ a.s. for an arbitrary initial approximation x0.

2.2. Stochastic Approximation with Descent Direction

In this subsection we will review the convergence conditions for a descent direction form of

SA algorithm proposed and analysed by Krejić et al., [11]. For a given initial approximation

x0, iterative rule of the algorithm is given by

xk+1 = xk + akdk, (2.3)

where dk is a descent direction defined by

GT
k dk < 0 a.s., (2.4)

Gk is the noisy gradient at xk and {ak} is a gain sequence that satisfies the conditions (2.1).

The convergence of the descent direction method is also achievable in stochastic sense under a

certain set of assumptions. Instead of assumption A1, two more assumptions on the direction

dk are imposed.

Let {xk} be a sequence generated by (2.3) and Fk the σ-algebra generated by x0, x1, . . . , xk.

Additional assumptions needed for the convergence of SA algorithm with descent direction are

the following [11].

A4 There exists c1 > 0 such that direction dk satisfies

(xk − x∗)TE(dk|Fk) ≤ −c1||xk − x∗|| a.s. for all k.

A5 There exists c2 > 0 such that

||dk|| ≤ c2||Gk|| a.s. for all k.

The assumption A4 limits the influence of the noise on dk and it is analogous to the as-

sumption C4 used in [17]. The assumption A5 connects the available noisy gradient with the

descent direction. Taking dk = −Gk, we get that A5 is satisfied for any c2 ≥ 1.

Theorem 2.2. ([11]) Assume that A2-A5 hold. Let {xk} be a sequence generated by (2.3).

Then the sequence {xk} converges to x∗ a.s. for an arbitrary initial approximation x0.

A descent direction form of SA method, is studied also by Bertsecas and Tsitsiklis in [1].
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2.3. Stochastic Approximation with Adaptive Step Sizes

The main drawback of SA algorithms (1.4) and (2.3) is slow convergence which mostly

depends on the choice of the step size sequence {ak}. The step sizes proportional to 1/k, such

as steps (2.2), become small very fast and make the iterative process quite slow. In order

to overcome this difficulty a number of modifications based on adaptive step size selection is

proposed in the literature.

One of the first adaptive step size techniques is proposed by Kesten, [9]. It is based on the

frequency of sign changes of the differences xk+1 − xk. Frequent sign changes indicate that the

current iteration is near the solution and a smaller step size is used in the next iterate. A larger

step size is used if changes in the sign are not frequent. The following step size rule is proposed

ak =
a

zk + 1
, (2.5)

where a > 0 and zk+1 = zk+I(GT
k+1Gk) and I represent indicator function defined by I(t) = 1

if t < 0 and I(t) = 0 if t ≥ 0.

Kesten’s idea is modified by Xu and Dai [21]. Authors discuss the properties of zk
k

and

propose a switching algorithm with the following step size rule

ak =

{

a
(k+1+A)α , if lk ≥ v,

a
(k+1+A)β , if lk < v,

(2.6)

where a > 0, A ≥ 0, lk = | zk
k
− P (εT1 ε2 < 0)|, 0.5 < α < β ≤ 1, v is a small positive constant,

and ε1, ε2 are the gradient noises defined by (1.3).

SA algorithm with adaptive step sizes and a general descent direction dk defined by (2.4)

is recently proposed in [12]. The step sizes are adjusted by analysing intervals for the optimal

function value f(x∗) at each iteration. Intervals are formed using fixed number of previously

observed noisy function values. Tracking the observed values of the objective function may

considerably improve the knowledge about the optimization process, even it might be more

costly. This issue is also discussed in [17,20], where it is concluded that using observed function

values to accept or reject steps can improve the algorithm’s stability. The step size sequence is

formed according to the rule

ak =











aθsk , Fk < 1
m(k)

∑m(k)
j=1 Fk−j − σ̂,

0, Fk > 1
m(k)

∑m(k)
j=1 Fk−j + σ̂,

a
(tk+1+A)α , otherwise,

(2.7)

where m(k) = min{k,m}, m ∈ N, θ ∈ (0, 1), a, σ̂ > 0, A ≥ 0, 0.5 < α ≤ 1, sk is a counter of

the occurrences of the events,







Fk <
1

m(k)

m(k)
∑

j=1

Fk−j − σ̂







,

and tk is a counter of the occurrences of the events







1

m(k)

m(k)
∑

j=1

Fk−j − σ̂ ≤ Fk ≤ 1

m(k)

m(k)
∑

j=1

Fk−j + σ̂







.
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Under additional assumption on the noise terms ξk, that is,

ξk, k = 0, 1, 2, ... are i.i.d. continuous random variables with a common

probability density function (pdf) p(x) > 0 a.s. for all x ∈ R, (2.8)

almost sure convergence of SA algorithm with step sizes (2.7) is proven [12].

Theorem 2.3. ([12]) Assume that A2-A5 hold, and the noise terms ξk satisfy the condition

(2.8). Let {xk} be a sequence generated by (2.3) with the step sizes {ak} defined by (2.7). Then

the sequence {xk} converges to x∗ a.s. for an arbitrary initial approximation x0.

There is a justification that the constant σ̂ in the step size rule (2.7) can be replaced with true

or estimated standard deviation of the noise added to the functional values F (x). Numerical

experiments also showed that this is a quite right decision, [12].

3. New Stochastic Approximation Algorithm

3.1. The Step Size Selection Rule and the Algorithm

Motivated by (2.7), we propose a new adaptive step size rule for SA algorithm. Our main

aim is to propose a criterion for accepting and rejecting steps with an approach that has a

direct insight into whether the objective function is improving. We suggest using the minimum

and the maximum of m(k) previously observed noisy function values Fk−1, . . . , Fk−m(k) instead

of their shifted mean. Throughout the paper we use the following notation:

Fmin
k,m(k) = min

1≤j≤m(k)
Fk−j and Fmax

k,m(k) = max
1≤j≤m(k)

Fk−j ,

where m(k) = min{k,m} and m ∈ N.

The formal formulation of our adaptive step size rule is the following

ak =











aθsk , Fk < Fmin
k,m(k),

0, Fk > Fmax
k,m(k),

a
(tk+1+A)α , otherwise,

(3.1)

where

• θ ∈ (0, 1), a > 0, A ≥ 0, 0.5 < α ≤ 1,

• sk counts occurrences of the events
{

Fk < Fmin
k,m(k)

}

up to kth iteration,

• tk counts occurrences of the events
{

Fmin
k,m(k) ≤ Fk ≤ Fmax

k,m(k)

}

up to kth iteration.

Using the rule (3.1), if the observed (noisy) function value in kth iteration Fk, defined

by (1.3), is higher than the maximum of m(k) previously observed function values, we suggest

blocking the step by taking ak = 0. If Fk is lower than the minimum ofm(k) previously observed

function values, we suggest step size ak = aθsk in the next iteration. Otherwise, if Fk is between

minimum and maximum of m(k) previously observed function values, we propose backup step

size similar to the step size (2.2), substituting k with tk which counts the occurrences of the

mentioned events.
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Our initial idea was to use a constant full step size ak = 1 when there is an improvement

in the function value. However, we chose the sequence ak = aθsk which retains property of the

gain sequence {ak}, suitable for convergence analysis. This step size sequence of larger steps

showed good numerical results in [12], which encouraged us to keep it in the new step size

rule. As it will be demonstrated in Section 4, we recommend taking θ close to 1. Note that

the parameter θ is the key parameter in controlling the magnitude of the step size when good

scenario occurs. The step size ak = aθsk with θ ≈ 1 will produce longer steps than steps of the

SA form (2.2), while the iterates are far away from the solution, but also when the number of

iterates becomes large.

Recall that the scheme (2.7) estimates the optimal function value in each iterate by forming

an interval using m(k) previous noisy function values

Jk = (
1

m(k)

m(k)
∑

j=1

Fk−j − σ̂,
1

m(k)

m(k)
∑

j=1

Fk−j + σ̂), (3.2)

where σ̂ > 0 is a constant, and m(k) = min{k,m}, m ∈ N. An optimal σ̂ in (3.2) is related

to the noise level of the function measurements which is unknown in practice and has to be

estimated, sometimes by additional procedures. The scheme (3.1) constructs an interval of the

following form

J̃k = (Fmin
k,m(k), F

max
k,m(k)) (3.3)

at each iterate. This approach can be applied without knowing or estimating the noise because

it does not require parameter σ̂ in the (3.3). The both intervals Jk and J̃k, estimate the optimal

function value independently. They are both sensitive on the extreme noisy function values,

but correct them in a different manner. The interval Jk has more variable bounds, the extreme

function values influence the mean, but the constant σ̂ corrects the influence. On the other

hand, the extreme function values have the biggest influence on the bound of the interval J̃k,

and can induce periods of a constant bound during the optimization process, which helps to

capture the optimal value when approaching to the solution.

Finally, we give the formulation of algorithm based on the adaptive step size selection rule

(3.1).

Algorithm 3.1. Min-Max Adaptive Stochastic Approximation

Step 0. Initialization. Choose an initial point x0 ∈ R
n, constants m ∈ N, θ ∈ (0, 1), a > 0,

A ≥ 0 and 0.5 < α ≤ 1. Set k = 0.

Step 1. Direction selection. Choose dk such that (2.4) holds.

Step 2. Step size selection. Calculate the noisy function measurement Fk and select the

step size ak according to the rule (3.1).

Step 3. Update iteration. Calculate xk+1 = xk + akdk, set k = k + 1 and go to Step 1.

3.2. Convergence Analysis

We will show that the step size sequence {ak} generated by Algorithm 3.1 satisfies the

conditions (2.1) almost surely. We assume that noise terms ξk, k = 0, 1, 2, . . . satisfy the
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conditions (2.8).

Firstly, we will focus on the distribution of the step sizes. It depends on the probability

of the events
{

Fk > Fmax
k,m(k)

}

,
{

Fk < Fmin
k,m(k)

}

and
{

Fmin
k,m(k) ≤ Fk ≤ Fmax

k,m(k)

}

. Recall that for

each k, Fk = fk + ξk, where fk = f(xk) is the true function value at xk. The following lemma

holds.

Lemma 3.1. If the noise terms ξk are i.i.d. continuous random variables and fk = fk−j , j =

1, . . . ,m(k), then the following probabilities hold

P (Fk > Fmax
k,m(k)) =

1

m(k) + 1
, (3.4)

P (Fk < Fmin
k,m(k)) =

1

m(k) + 1
, (3.5)

P (Fmin
k,m(k) ≤ Fk ≤ Fmax

k,m(k)) =
m(k)− 1

m(k) + 1
. (3.6)

Proof. Let us denote by Φ(x) the cumulative distribution function (cdf) of any of the

random variables ξk. If we denote by Φk
j (x) the cdf of the random variable Fk−j , then from

Fk−j = fk−j + ξk−j , we have that

Φk
j (x) =P (Fk−j ≤ x) = P (fk−j + ξk−j ≤ x)

=P (ξk−j ≤ x− fk−j) = Φ(x − fk−j). (3.7)

And, if we denote by Φk
(m(k))(x) the cdf of the random variable Fmax

k,m(k), then from the iid

property of the noise terms we have that Fk−j , j = 1, . . . ,m(k) are also independent continuous

random variables, so this, the equality (3.7) and the assumption fk = fk−j , j = 1, . . . ,m(k)

imply that

Φk
(m(k))(x) =P (Fmax

k,m(k) ≤ x) = P (Fk−1 ≤ x, · · · , Fk−m(k) ≤ x)

=P (Fk−1 ≤ x) · · ·P (Fk−m(k) ≤ x) = Φk
1(x) · · ·Φk

m(k)(x)

=Φ(x− fk−1) · · ·Φ(x− fk−m(k)) = (Φ(x− fk))
m(k). (3.8)

We will use that for any two independent continuous random variables X and Y with cdfs

ΦX(x) and ΦY (x) respectively, the probability of the event {X > Y } can be expressed as

P (X > Y ) =

∫ +∞

−∞

ΦY (x)Φ
′
X(x)dx. (3.9)

So, (3.7)-(3.9) and the independence of the random variables Fk and Fmax
k,m(k) imply that

P (Fk > Fmax
k,m(k)) =

∫ +∞

−∞

(Φ(x − fk))
m(k)Φ′(x− fk)dx =

∫ 1

0

ym(k)dy =
1

m(k) + 1
,

since Φ(x) is a cdf and limx→−∞ Φ(x) = 0 and limx→+∞ Φ(x) = 1. Similarly, it can be derived

that

P (Fk < Fmin
m(k )) =

1

m(k) + 1
.

And finally,

P (Fmin
k,m(k) ≤ Fk ≤ Fmax

k,m(k)) = 1− 2

m(k) + 1
=

m(k)− 1

m(k) + 1
,

which completes the proof. �
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Remark 3.1. Note that if the noise terms ξk are i.i.d. continuous random variables and there

are m(k) consecutive zero steps ak−1 = ak−2 = . . . = ak−m(k) = 0, then xk = xk−1 = . . . =

xk−m(k) so fk = fk−j for j = 1, . . . ,m(k). Therefore, Lemma 3.1 holds.

Remark 3.1 helps us to recognize the importance of the event

Ak =
{

ak−1 = ak−2 = . . . = ak−m(k) = 0
}

(3.10)

for the distribution of the step sizes ak. So, our next step will be to investigate the probability

of having m(k) consecutive zero steps.

Lemma 3.2. Let the step sizes ak be defined by (3.1). If the noise terms ξk satisfy the condi-

tions (2.8), then for k = 1, 2, . . ., the following inequality holds

P (Ak) > 0, (3.11)

where Ak is defined by (3.10).

Proof. Let us assume the contrary that there exists k such that

P (Ak) = 0. (3.12)

It follows

0 = P (Ak) = P (Fk−1 > Fmax
k−1,m(k), . . . , Fk−m(k) > Fmax

k−m(k),m(k))

= P (Fk−1 > Fk−2 > . . . > Fk−m(k) > Fmax
k−m(k),m(k))

≥ P
(

Fk−1 > Fk−2 > . . . > Fk−m(k) > . . . > Fk−2m(k)

)

. (3.13)

Therefore, we have

P
(

Fk−1 > Fk−2 > . . . > Fk−m(k) > . . . > Fk−2m(k)

)

= 0. (3.14)

Let us now define δ-neighbourhood of the optimal value f∗ = f(x∗). We say, y is in δ-

neighbourhood of the optimal value f∗ if |y − f∗| < δ, where δ > 0. Next, denote by B δ
2
the

event

B δ
2
=

{

fk−j is in
δ

2
− neighbourhood of the optimal value f∗, j = 1, . . . , 2m(k)

}

.

The event B δ
2
represents the situation when 2m(k) consecutive true values of the objective

function are in some δ
2 -neighbourhood of the optimal value f∗. Note that the event B δ

2
depends

on the index k, although we omit the k in the notation. The reason is that at the beginning of

the proof we assume the existence of k such that P (Ak) = 0, therefore for the remaining proof,

k acts as a constant.

Now, we chose δ > 0 such that

P (B δ
2
) > 0. (3.15)

Note that, such δ > 0 exists. For example, we can take

δ = 2 ∗ max
1≤j≤2m(k)

|fk−j − f∗|+ 1.
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For this choice of δ, actually we have P (B δ
2
) = 1.

It follows that

0 = P
(

Fk−1 > Fk−2 > . . . > Fk−m(k) > . . . > Fk−2m(k)

)

≥ P
(

Fk−1 > Fk−2 > . . . > Fk−m(k) > . . . > Fk−2m(k)|B δ
2

)

P (B δ
2
). (3.16)

So, from (3.15) and (3.16) we obtain

P
(

Fk−1 > Fk−2 > . . . > Fk−m(k) > . . . > Fk−2m(k)|B δ
2

)

= 0. (3.17)

However, if fk−j , j = 1, 2, . . . , 2m(k) are in a δ
2−neighbourhood of the optimal value f∗, then

we have

|fk−j − fk−i| ≤ |fk−j − f∗|+ |f∗ − fk−i| <
δ

2
+

δ

2
= δ,

for all j, i = 1, 2, . . . , 2m(k) and

fk−i − δ < fk−j < fk−i + δ.

Under the realization of the event B δ
2
, the inequalities

ξk−j > ξk−j−1 + δ, j = 1, 2, . . . , 2m(k)− 1 (3.18)

imply

Fk−j = fk−j + ξk−j > fk−j + ξk−j−1 + δ

> fk−j−1 + ξk−j−1 = Fk−j−1, j = 1, 2, . . . , 2m(k)− 1. (3.19)

Consequently,

P
(

Fk−j > Fk−j−1, j = 1, 2, . . . , 2m(k)− 1|B δ
2

)

≥

P
(

ξk−j > ξk−j−1 + δ, j = 1, 2, . . . , 2m(k)− 1|B δ
2

)

. (3.20)

Now, (3.17) and (3.20) imply that

P
(

ξk−j > ξk−j−1 + δ, j = 1, 2, . . . , 2m(k)− 1|B δ
2

)

= 0. (3.21)

Taking into account that the conditional probability in (3.21) is independent of the condition,

we can rewrite (3.21) as

P (ξk−j > ξk−j−1 + δ, j = 1, 2, . . . , 2m(k)− 1) = 0. (3.22)

Note that

I(δ) = P (ξk−j > ξk−j−1 + δ, j = 1, 2, . . . , 2m(k)− 1)

= P
(

ξk−1 > ξk−2 + δ > ξk−3 + 2δ > ... > ξk−2m(k) + (2m(k)− 1)δ
)

=

∫ ∞

−∞

p(xk−1)

∫ xk−1−δ

−∞

p(xk−2) · · ·
∫ xk−2m(k)+1−(2m(k)−1)δ

−∞

p(xk−2m(k))dxk−1dxk−2 . . . dxk−2m(k) > 0 (3.23)
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almost surely for all δ > 0, since p(x) > 0 a.s. by conditions (2.8), and I(δ) is a decreasing

function, with

lim
δ→0

I(δ) =
1

(2m(k))!
and lim

δ→+∞
I(δ) = 0,

which is in contradiction with (3.22). This implies that P (Ak) > 0 for all k. �

Now, when we know that m(k) consecutive zero steps may occur with non zero probability,

we can show that there is non zero probability of occurring each of the steps ak = aθsk, ak = 0

and ak = a
(tk+1+A)α at every iteration k.

Lemma 3.3. Let the step sizes ak be defined by (3.1). If the noise terms ξk satisfy the condition

(2.8), then for all k = 1, 2, . . .

P (ak = aθsk) > 0, P (ak = 0) > 0 and P (ak =
a

(tk + 1 +A)α
) > 0. (3.24)

Proof. From Remark 3.1 and Lemma 3.1, it follows

P (ak = aθsk) ≥ P (ak = aθsk |Ak) · P (Ak) =
1

m(k) + 1
· P (Ak) > 0, (3.25)

P (ak = 0) ≥ P (ak = 0|Ak) · P (Ak) =
1

m(k) + 1
· P (Ak) > 0, (3.26)

P (ak =
a

(tk + 1 +A)α
) ≥ P (ak =

a

(tk + 1 +A)α
|Ak) · P (Ak)

=
m(k)− 1

m(k) + 1
· P (Ak) > 0. (3.27)

Note that the conditional probabilities P (·|Ak) are well defined because of Lemma 3.2. �

Lemma 3.3 ensures that there are infinitely many of both of non zero steps almost surely.

Lemma 3.4. Let the step sizes ak be defined by (3.1) and let the noise terms ξk satisfy the

conditions (2.8). Then there are almost surely infinitely many steps ak = aθsk and infinitely

many steps ak = a
(tk+1+A)α .

Proof. Same as the proof of Lemma 3.3 in [12]. �

Lemma 3.4 ensures that the step size sequence {ak} satisfies almost surely the conditions

(2.1).

Theorem 3.1. If the noise terms ξk satisfy the conditions (2.8), then the step size sequence

{ak}, defined by (3.1), satisfies the conditions (2.1) almost surely.

Proof. If we denote by C = {k|Fk < Fmin
k,m(k)} and D = {k|Fmin

k,m(k) ≤ Fk ≤ Fmax
k,m(k)}, then

by the definition of the sequence {ak}, the step size selection rule (3.1), we have

∑

k

ak =
∑

k∈C

aθsk +
∑

k∈D

a

(tk + 1 +A)α
=

∑

k

aθk +
∑

k

a

(k + 1 +A)α
= ∞,

∑

k

a2k =
∑

k∈C

(aθsk)2 +
∑

k∈D

(
a

(tk + 1 +A)α
)2 =

∑

k

(aθk)2 +
∑

k

(
a

(k + 1 +A)α
)2 < ∞,
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almost surely, since almost surely we have infinitely many steps ak = aθsk and infinitely many

steps ak = a
(tk+1+A)α by Lemma 3.4. So, the step size sequence {ak} satisfies the conditions

(2.1) almost surely. �

Now, we will establish the convergence of the Algorithm 3.1. Moreover, we will discuss cases

when descent direction is a negative gradient and a general descent direction separately.

Note that conditions (2.1) for the step sizes in SA convergence theorems, Theorem 2.1

and Theorem 2.2, are stated for deterministic step sizes ak. When step sizes are random, the

conditions (2.1) need to be satisfied almost surely (a.s.). Moreover, it is necessary to assume

that ak is Fk-measurable, where Fk is the σ-algebra generated by x0, x1, x2, ..., xk, and {xk} is a

sequence generated by the corresponding algorithm. This means that we are not allowed to use

information from (k + 1)th iteration to compute ak, similar to the assumption in [14]. Under

these additional assumptions, the SA convergence theorems, Theorem 2.1 and Theorem 2.2,

also hold when step sizes ak are random.

Theorem 3.1 and Theorem 2.2 ensure the almost sure convergence of Algorithm 3.1 with a

general descent direction.

Theorem 3.2. Assume that A2-A5 hold. Let {xk} be a sequence generated by Algorithm 3.1,

where the noise terms ξk satisfy the conditions (2.8). Then the sequence {xk} converges to x∗

a.s. for an arbitrary initial approximation x0.

The almost sure convergence of the Algorithm 3.1 when dk = −Gk can be established using

SA convergence theorem, Theorem 2.1, and the property of the gain sequence {ak} given with

Theorem 3.1.

Corollary 3.1. Assume that A1-A3 hold. Let {xk} be a sequence generated by Algorithm 3.1

with dk = −Gk, where the noise terms ξk satisfy the conditions (2.8). Then the sequence {xk}
converges to x∗ a.s. for an arbitrary initial approximation x0.

4. Numerical Experiments

4.1. Testing the algorithms on synthetic data

Algorithm 3.1 is tested using different search directions and compared with other relevant

algorithms. The collection of test problems consists of 20 problems. Detailed list of the test

functions, the problem dimensions n, the initial approximations x0 and optimal function value

f∗ is given in Table 1. The problems are selected from the collections of unconstrained mini-

mization problems in [3], which are also mainly described in [13] and [15]. First 18 test problems

are given in the form of nonlinear least squares,

f(x) =

r
∑

i=1

f2
i (x).

The transformation of original problems into problems in noisy environment is performed

by adding normal distributed noise to the function and gradient evaluations, i.e. the noise of

the form

ξ ∼ N (0, σ2) and ε ∼ N (0, σ2In×n),

where σ is the noise level and In×n is the identity matrix. The objective function and the

gradient value at the current iterate xk are calculated using sample average approximation of
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Table 4.1: Test problems.

No Problem; n x0 f∗

1 The Gaussian function; 3 (4/10, 1, 0) 1.12793 × 10−8

2 The Box 3-dimensional function; 3 (0, 10, 5) 0

3 The variably dimensioned function; 4 (3/4, 2/4, 1/4, 0) 0

4 The Watson function; 4 (0, 0, 0, 0) 2.4384 × 10−6

5 The Penalty Function I ; 10 (1, 1, . . . , 1) 7.08765 × 10−5

6 The Penalty Function II ; 4 (1/2, 1/2, 1/2, 1/2) 9.37629 × 10−6

7 The Trigonometric Function; 10 (1/10, 1/10, . . . , 1/10) 0

8 The Beale Function; 2 (1, 1) 0

9 The Chebyquad Function; 10 (5/11, 10/11 . . . , 50/11) 6.50395 × 10−3

10 The Gregory and Karney Function; 4 (0, 0, 0, 0) −4

11 The Hilbert Matrix Function; 4 (1, 1, 1, 1) 0

12 The De Jong Function 1; 3 (−5.12, 0, 5.12) 0

13 The Branin RCOS Function; 2 (−1, 1) 0.397887

14 The Colville Polynomial; 4 (1/2, 1,−1/2,−1) 0

15 The Powell 3D Function; 3 (0, 1, 2) 1

16 The Himmelblau function, 2 (−1.3, 2.7) 0

17 The Fletcher-Powell function; 3 (0, 0, 0) 0

18 The Biggs EXP6 function; 6 (1, 2, 1, 1, 1, 1) 0

19 Strictly Convex 1; 10 (1/10, 2/10, . . . , 1) 10

20 Strictly Convex 2; 10 (1, 1, . . . , 1) 5.5

a small size equals to 3. Testing procedure is motivated by computational implementation

in [11]. For each test problem and each algorithm, N = 50 independent runs starting from

the same initial point are conducted. Exit parameters are the final iteration xend, the final

function value Fend, and the final gradient value Gend. Algorithms stop if the gradient value

becomes small enough, ||Gk|| ≤ C, where we use C = min{√nσ, 1}, or if the maximal number

of 200n function evaluations is reached, with each gradient evaluation counted as n function

evaluations. In this manner, the algorithms stop with xend if either we reach a stationary point

in stochastic sense or if the maximal number of function evaluations is used. Runs are classified

into three categories: successful (convergent), partially successful and unsuccessful (divergent)

runs. A run is successful if a method stops due to ||Gend|| ≤ C. The number of successful runs

is denoted by Nconv. If ||Gend|| > 200
√
n, the run is unsuccessful. The number of divergent

runs is denoted by Ndiv. A run that stops due to exhausting the maximal number of allowed

function evaluations is partially successful and the number of these runs is denoted by Npar.

Algorithm 3.1 is tested with a negative gradient direction and with a quasi-Newton direction.

We have chosen BFGS direction dk = −B−1
k Gk, with the update formula

Bk+1 = Bk − Bkδkδ
T
k Bk

δTk Bkδk
+

∆k∆
T
k

∆kδk
, (4.1)

where

δk = xk+1 − xk and ∆k = G(xk+1, εk)−G(xk, εk).

Note that the gradient difference ∆k is calculated using the same sample set which is also

implemented in [6, 11, 12, 19].
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Since we consider ”zero” step as a bad scenario, during testing procedure we have put

limitation to the number of consecutive zero steps. In theoretical analysis, we have shown that

step size sequence has three infinite subsequences almost surely, see Lemma 3.4. It means there

cannot occur infinitely many consecutive zero steps. Therefore, the limitation of the number of

consecutive zero steps has a theoretical justification. A correction is done using following rule:

if the number of consecutive zero steps is greater than some predetermined number mcorr, in

next iteration we use ak = a
(tk+1+A)α as a step size. We have obtained empirically that it is the

best to use mcorr = m+ 1 as a correction value.

The values of parameters a, A and α that we use in all tested algorithms are given in

Table 4.2.

Table 4.2: The initialization of the parameters a, A and α.

Problem a A α

1 1 1 0.75

2 1 100 0.501

3 0.1 1 0.75

4 0.1 1 0.75

5 0.1 1 0.75

6 0.1 100 0.501

7 1 100 0.501

8 1 100 0.501

9 0.1 100 0.75

10 0.5 1 0.501

11 0.5 1 0.501

12 0.1 100 0.75

13 0.5 1 0.501

14 1 100 0.501

15 0.1 100 0.75

16 0.5 1 0.501

17 1 0 0.602

18 1 0 0.602

19 0.5 100 0.501

20 0.1 100 0.75

4.1.1. Sensitivity analysis

We analyze sensitivity of the Algorithm 3.1 with dk = −Gk (MMGD) and with dk = −B−1
k Gk

(MMDD) with respect to parameter θ for different levels of noise. Two values are chosen for

θ = 0.75, 0.999. Similarly as in [12], we obtained empirically m = 10 as the most suitable choice

and used this value in testing procedures.

As a tool for the sensitivity analysis we use Mean Squared Error (MSE) of the objective

function estimator given by

MSE(f) =
∑

r:||Gr||≤C

(yr − f∗)2/Nconv,

where Gr is the last estimate of the gradient, yr is the last estimate of the optimal functional

value f∗.
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Table 4.3 showsMean Squared Error obtained by performing algorithmsMMGD andMMDD

with θ = 0.75 and θ = 0.999 for problems 1-10 tested with noise levels σ = 0.4 and σ = 1 . The

results for problems 11-20 are listed in Table 4.4. Note that fail denotes a case when all runs

either partially successful or divergent.

Table 4.3: MSE(f) for Problems 1-10.

prb σ
MMGD MMDD

θ = 0.75 θ = 0.999 θ = 0.75 θ = 0.999

1
0.4 7.20E-05 5.00E-05 2.42E-04 2.47E-04

1 1.46E-03 2.59E-03 8.16E-04 2.47E-04

2
0.4 3.38E-04 1.80E-05 1.79E+01 8.33E-06

1 9.80E-05 1.28E-04 1.30E-01 7.37E-04

3
0.4 fail fail fail 5.94E-04

1 fail fail fail 2.88E-02

4
0.4 1.69E-03 7.75E-04 fail fail

1 2.46E-03 3.31E-03 fail fail

5
0.4 fail fail fail fail

1 fail fail fail fail

6
0.4 2.90E-04 1.80E-05 6.88E-03 3.11E-03

1 8.03E-04 2.88E-04 2.70E-02 2.23E-01

7
0.4 3.20E-05 1.28E-04 2.32E-04 1.28E-04

1 fail fail fail fail

8
0.4 2.63E-04 fail 7.78E+00 9.62E-01

1 2.59E-03 fail 2.94E+01 7.22E-01

9
0.4 3.78E-05 3.10E-05 3.26E-03 5.83E-04

1 fail fail 6.97E-03 6.97E-03

10
0.4 2.45E-01 1.29E-01 6.57E-01 5.32E-01

1 2.44E-01 1.28E-01 3.57E-01 3.75E+00

According to the obtained results, the performance of the Algorithm 3.1 is sensitive to the

parameter θ. Taking larger θ decreases MSE(f) in almost all cases for smaller level of noise,

regardless of chosen direction. This result confirms our initial hypothesis for taking larger step

when a sufficient decrease of objective function value is observed. When the noise level is higher,

σ = 1, taking larger θ does not produce such clear pattern in reduction of MSE(f). Therefore,

when noise have strong influence, it may be useful to take smaller θ in some cases. It will still

produce larger steps when good scenario occurs at the beginning of the process.

4.1.2. Comparison of the algorithms

Now, we compare performance of the Algorithm 3.1 with algorithms presented in Section 2.

Comparative results for the following 7 algorithms are presented:

• SAGD - Algorithm (1.4) with SA step sizes (2.2), [16]

• XDGD - Algorithm (1.4) with adaptive step sizes (2.6), [21]

• MSGD - Algorithm (1.4) with adaptive step size rule (2.7), negative gradient direction

dk = −Gk, θ = 0.999, m = 10 and and σ̂ = σ, [12]

• MMGD - Algorithm 3.1 with negative gradient direction dk = −Gk, θ = 0.999 andm = 10
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Table 4.4: MSE(f) for Problems 11-20.

prb σ
MMGD MMDD

θ = 0.75 θ = 0.999 θ = 0.75 θ = 0.999

11
0.4 5.71E-03 5.78E-04 2.24E-01 1.05E-01

1 1.04E-02 1.06E-03 3.69E+00 8.88E-02

12
0.4 fail 4.50E-04 3.87E+01 9.88E-01

1 fail 1.57E-03 2.01E+02 1.52E+01

13
0.4 9.78E-06 1.24E-06 1.93E-03 3.45E-01

1 4.59E-05 6.10E-03 1.88E+01 9.34E-01

14
0.4 fail fail fail fail

1 fail fail fail fail

15
0.4 3.06E-04 2.00E-03 1.48E-02 1.61E-02

1 1.25E-03 1.11E-02 2.30E-02 1.67E-03

16
0.4 6.91E-03 fail fail 1.44E-02

1 5.53E-03 fail fail fail

17
0.4 fail fail 1.98E-01 4.56E+00

1 fail fail 8.74E+01 8.44E-01

18
0.4 fail 2.65E-03 2.08E+01 3.24E-03

1 2.59E-03 5.02E-03 5.69E-02 1.16E-01

19
0.4 3.38E-04 5.12E-04 3.44E-03 2.00E-04

1 3.20E-03 7.84E-02 fail 1.27E+01

20
0.4 3.43E-01 8.82E-04 5.15E-02 2.37E-03

1 fail 2.12E-01 2.62E+01 fail

• SADD - Algorithm (2.3) with BFGS direction and SA step sizes (2.2), [11]

• MSDD - Algorithm (2.3) with adaptive step size rule (2.7), BFGS direction, θ = 0.999,

m = 10 and σ̂ = σ, [12]

• MMDD - Algorithm 3.1 with BFGS direction, θ = 0.999 and m = 10

We have chosen to use m = 10 and θ = 0.999 for the both step size rules, (3.1) and

(2.7) compare these algorithms. For the performance measure we use the number of function

evaluation needed in successful and partially successful runs

πij =
1

|Nconij

⋃

Nparij |
∑

r∈Nconij

⋃
Nparij

fcalcrij
nj

,

where Nconij is the number of successful runs for ith algorithm to solve problem j, Nparij
is the number of partially successful runs for ith algorithm to solve problem j, fcalcrij is the

number of function evaluations needed for ith algorithm to solve problem j in rth run and nj

is the dimension of problem j, i = 1, · · · , 7, j = 1, · · · , 20, r = 1, · · · , 50.
Figure 4.1 shows performance profiles for σ = 0.4 and σ = 1. For both noise levels, Algo-

rithm 3.1 outperforms all other tested algorithms, regardless of chosen direction. The scheme

(2.7) is competitive with (3.1) only for BFGS direction and small level of noise. It confirms our

belief that avoiding σ̂ in the step size scheme can significantly improve the optimization process.

As expected, results clearly demonstrate that our algorithm outperforms corresponding method

with SA step sizes (2.2), regardless of the direction, noise levels. Furthermore, the second-order

direction, namely BFGS, is significantly better than the negative gradient direction. It also
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Fig. 4.1. Performance profiles for different values of the noise level

outperforms adaptive algorithm (2.6) which confirms that taking noisy functional values as

criterion for adjusting steps can improve the optimization process.

4.2. Testing the algorithms on real data

In this subsection we consider an application of Algorithm 3.1 with dk = −Gk to a multiple

linear regression problem. The multiple linear regression is used to explain the relationship

between predictor variables and a response variable by fitting a linear equation to observed

data. Let the data set {(xi, yi)}pi=1, with predictor matrix X ∈ R
p×d and a response vector

y ∈ R
p be given. The goal is to minimize the following objective function

f(w) = ||y −Xw||22 + λ||w||22, (4.2)

where w ∈ R
d is the model parameter that needs to be estimated, λ ≥ 0 is a regularization

parameter and || · ||2 is the Euclidean norm. For the value of the regularization parameter

we used λ = 0.1. Note that the objective function (4.2) is convex, therefore Algorithm 3.1

reaches the optimal solution. A stochastic approximations of the objective function and the

gradient are calculated using uniformly chosen samples of the training data with the sample

size ⌊r · p⌋ , r ∈ (0, 1), where ⌊·⌋ denotes the whole-number part. For value of the parameter r

we used r = 0.3.

In our numerical study, a data set from EUROSTUDENT research conducted in Serbia,

Montenegro and Bosnia and Herzegovina in 2014 is used. The EUROSTUDENT project collects

comparable data on the social dimension of European higher education. More information can

be found at the web page http://www.eurostudent.eu.

The total sample size is p = 9003. A multiple regression model is built to assess the impact

of potential predictor variables on students’ overall satisfaction with their studies. We have

considered d = 5 predictor variables: social factors, financial factors, external factors, work

commitments and institutional factors.

We use the same notation for the algorithms as in Subsection 4.1. The algorithms SAGD

(algorithm (1.4)) and MMGD (Algorithm 3.1 with negative gradient direction) are tested with

the following parameter specification: a = 1, A = 1, α = 0.602, θ = 0.999,m = 10.

Figure 4.2 reports the performance of the two methods. The vertical axis measures the value

of the objective function (cost) and the horizontal axis measures the number of iterations. The
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result shows that the MMGD method outperforms SAGD. It can be seen that the cost of

MMGD decreases faster, therefore it is more efficient and cheaper in comparison to SAGD.

0 500 1000 1500 2000 2500
10

−2

10
−1

10
0

10
1

10
2

iteration

c
o

s
t

SAGD

MMGD

Fig. 4.2. Cost per iteration

5. Conclusions

We have proposed and analyzed a new adaptive step size selection rule for SA algorithms.

According to the rule, the step sizes are selected by monitoring previous function values, without

knowing or estimating the noise level. We have shown that under common assumption of

independent identically distributed continuous random noise with positive pdf, the new adaptive

step size sequence has desired SA step sizes convergence property. Numerical results confirmed

our expectations for good performance of the proposed SA method with adaptive step sizes.

We believe that the adaptive step size rule can be improved by finding more adequate

interval that determines the switching rule among step sizes.
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