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Abstract

This paper introduce a cascadic multigrid method for solving semilinear elliptic equa-

tions based on a multilevel correction method. Instead of the common costly way of directly

solving semilinear elliptic equation on a very fine space, the new method contains some

smoothing steps on a series of multilevel finite element spaces and some solving steps to

semilinear elliptic equations on a very coarse space. To prove the efficiency of the new

method, we derive two results, one of the optimal convergence rate by choosing the appro-

priate sequence of finite element spaces and the number of smoothing steps, and the other

of the optimal computational work by applying the parallel computing technique. More-

over, the requirement of bounded second order derivatives of nonlinear term in the existing

multigrid methods is reduced to a bounded first order derivative in the new method. Some

numerical experiments are presented to validate our theoretical analysis.

Mathematics subject classification: 65N30, 65N25, 65L15, 65B99.

Key words: Semilinear elliptic equation, Parallel computing, Cascadic multigrid, Multilevel

correction, Finite element method.

1. Introduction

The purpose of this paper is to study the multigrid finite element method for semilinear

elliptic problems. As we know, the multigrid methods [4–6, 9, 13, 19, 24] provide optimal order

algorithms for solving boundary value problems. The error bounds of the approximate solutions

obtained from these efficient numerical algorithms are comparable to the theoretical bounds

determined by the finite element discretization. In the past decades, the multigrid method is

also applied to nonlinear elliptic problem to improve the efficiency of nonlinear elliptic problem

solving, i.e. [19, 25, 26]. In these methods, the Newton iteration is adopted to linearize the

nonlinear equations which require bounded second order derivatives of the nonlinear terms.

For more information, please refer to [15, 19, 25] and the references cited therein.

Recently, a type of multigrid method for eigenvalue problems has been proposed in [17,23].

And the corresponding idea can be found in [7, 11, 16]. The aim of this paper is to present a

cascadic multigrid method for solving semilinear elliptic equations based on the combination of

the multilevel correction method [17,23] and the cascadic multigrid method for boundary value

problems. Similarly to the cascadic multigrid method for the boundary value problem [2, 20],

* Received March 22, 2017 / Revised version received September 4, 2017 / Accepted October 31, 2017 /

Published online August 14, 2018 /



A Cascadic Multigrid Method for Semilinear Elliptic Equations 113

we only do the smoothing steps for the involved boundary value problems. Besides, we need

to solve some semilinear elliptic equations on a low dimensional space. By organizing suitable

numbers of smoothing iteration steps in different levels, the final approximate solution can have

the same accuracy as the solution of standard finite element method. In this new version of

multigrid method, solving semilinear elliptic problem will not be much more difficult than the

multigrid scheme for the corresponding linear boundary value problems. Compared with the

existing multigrid method for the semilinear problem, our new method only require a bounded

first order derivative of the nonlinear term.

During the numerical calculation, computational complexity and memory consumption in-

crease exponentially with the growth of the scale. As we know, distributed parallel computing

can balance the load on each computing node, which will play an important role in the sim-

ulation of large scale systems. So as to improve the computational efficiency, we will use the

parallel technique to design an algorithm with good scalability.

An outline of the paper goes as follows. In Section 2, we introduce the finite element method

for the semilinear elliptic equation as well as some important properties. The Section 3 is the

main part of the paper, where a type of cascadic multigrid algorithm for solving the semilinear

elliptic equation and the corresponding error estimate are given. In Section 4, we add the parallel

technique to the cascadic multigrid algorithm in Section 3 and estimate the computational work

for the parallel algorithm. Four numerical examples are presented in Section 5 to validate our

theoretical analysis. Some concluding remarks are given in the last section.

2. Finite Element Method for Semilinear Elliptic Equation

In this paper, the letter C (with or without subscripts) is used to denote a constant which

may be different at different places. For convenience, the symbols x1 . y1, x2 & y2 and

x3 ≈ y3 mean that x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3. Let Ω ⊂ Rd (d = 2, 3)

denote a bounded convex domain with Lipschitz boundary ∂Ω. We use the standard notation

for Sobolev spaces W s,p(Ω) and their associated norms ‖ · ‖s,p,Ω and seminorms | · |s,p,Ω (see,

e.g, [1]). For p = 2, we denote Hs(Ω) = W s,2(Ω) and H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where

v|∂Ω = 0 is in the sense of trace. For simplicity, we use ‖ ·‖s to denote ‖ ·‖s,2,Ω and V to denote

H1
0 (Ω) in the rest of the paper.

We consider the following type of semilinear elliptic equation:

{
−∇ · (A∇u) + f(x, u) = g, in Ω,

u = 0, on ∂Ω,
(2.1)

where A = (ai,j)d×d is a symmetric positive definite matrix with ai,j ∈ W 1,∞ (i, j =

1, 2, · · · , d), and f(x, u) is a nonlinear function corresponding to the second variable and satisfies

the following assumption.

Assumption A: The nonlinear function f(x, ·) has a non-negative derivative in the second

argument

0 ≤
∂f

∂v
(x, v) ≤ Cf , ∀x ∈ Ω and ∀v ∈ V. (2.2)

The weak form of the semilinear problem (2.1) can be described as: Find u ∈ V such that

a(u, v) + (f(x, u), v) = (g, v), ∀v ∈ V, (2.3)


