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Abstract

A new two-level subspace method is proposed for solving the general unconstrained

minimization formulations discretized from infinite-dimensional optimization problems. At

each iteration, the algorithm executes either a direct step on the current level or a coarse

subspace correction step. In the coarse subspace correction step, we augment the tradition-

al coarse grid space by a two-dimensional subspace spanned by the coordinate direction

and the gradient direction at the current point. Global convergence is proved and conver-

gence rate is studied under some mild conditions on the discretized functions. Preliminary

numerical experiments on a few variational problems show that our two-level subspace

method is promising.
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1. Introduction

Consider an infinite-dimensional minimization problem

min
u∈V

F(u), (1.1)

where F is a mapping from V to R and V is the infinite-dimensional space where u lives in.

Infinite-dimensional optimization problems are a major source of large-scale finite dimensional

optimization problems, such as partial differential equations (PDEs) and optimal control prob-

lems governed by PDEs. Since it is very hard or almost impossible to obtain explicit solutions

for these problems, they are usually solved numerically either by a “discretize-then-optimize”

strategy or an “optimize-then-discretize” strategy. For these kind of problems, usually a very

* Received August 17, 2016 / Revised version received March 14, 2017 / Accepted June 28, 2017 /

Published online August 7, 2018 /



882 C. CHEN, Z.W. WEN AND Y.X. YUAN

fine discretization is needed to obtain a satisfactory discretization error, but the computation-

al cost is much expensive. In this paper, we follow the second strategy and propose a new

numerical scheme to solve them.

Quite a few numerical optimization methods for large-scale problems have been developed

using a fundamental technique named subspace optimization directly or indirectly. It attracts

more and more attention in recent years [1–3]. The conjugate gradient method arose originally

in [4] to solve linear systems and were introduced in nonlinear minimization in [5]. It defines a

new search direction by a given linear combination of the negative gradient direction and the

previous search direction. Yuan and Stoer [6] viewed the conjugate gradient method from the

subspace point of view, namely, to find a best trial direction, even an approximate minimum, in

the 2-dimensional subspace spanned by the two conjugate directions. Another popular method

in nonlinear programming is the limited-memory quasi-Newton method proposed by Shanno [7]

and Nocedal [8]. It generates the quasi-Newton matrix by using some historical information.

The block coordinate descent (BCD) and the alternating direction method of multipliers (ADM-

M) are de facto subspace techniques. More general subspace methods and latest developments

are referred to [3, 9–11].

Although existing optimization methods can be applied to solve problem (1.1), they make

little use of its underlying hierarchical structure. In contrast, multigrid/multilevel method is a

more natural concept. It was originally proposed for solving linear elliptic partial differential

equations with simple boundary value and proved to work well [12–15]. It takes advantage

of different levels discretization of infinite-dimensional problems to execute the coarse grid

corrections recursively with a combination of smoothing steps on fine grid. It not only reduces

the computational cost but also accelerates the convergence rate. It is well-known that good

performance of iterative methods may depend on a good initial guess. The mesh refinement,

or full multigrid method [14,15], uses the nested iteration idea to solve fine grid problems with

an initial point interpolated from the solution of the next coarser grid. Multigrid methods

were also extended to solve nonlinear PDE problems. One approach is called Newton-MG

method [14–16], in which a linear expansion at the current iterate is used in outer iterations

and multigrid methods were used for Jacobian systems in inner iterations. Another extension

is full approximation scheme (FAS) [15–17], in which the multigrid methodology is directly

applied to the original system of nonlinear equations and its corresponding system of nonlinear

residual equations. It obtains a full approximation rather than an error correction term in

coarse grid problems. A combination of Newton-MG and FAS was proposed by Yavneh and

Dardyk [18]. The other extension is projection multilevel method [19–21], which regards a series

of discretization spaces as projections from the infinite-dimensional space, and represents them

with nodal or finite element. Taking projections onto various subspaces, it solves the problems

by correcting the current iterate.

Multigrid method has also be applied to infinite-dimensional optimization problems, es-

pecially optimal control problems governed by PDEs [22–25]. It is used for solving the KKT

systems derived from optimality conditions and inner loops of optimization scheme derived from

original problems. An approach was proposed by Nash [26] and developed in [27–30] for solving

the unconstrained convex infinite-dimensional optimization problems, in which a linear term is

added in the discretized nonlinear problems at each level other than the finest one to enforce

first order coherence in the neighborhood of current iterate between the neighboring levels of

grid. This is a new reinterpretation of multigrid from an optimization point of view and uses

it as outer iterative scheme [25]. Based on this scheme, Wen and Goldfarb [31] proposed a


