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Abstract

In this paper, we study Nitsche extended finite element method (XFEM) for the inter-

face problem of a two dimensional diffusion equation. Specifically, we study the quadratic

XFEM scheme on some shape-regular family of grids and prove the optimal convergence

rate of the scheme with respect to the mesh size. Main efforts are devoted onto classifying

the cases of intersection between the elements and the interface and prove a weighted trace

inequality for the extended finite element functions needed, and the general framework of

analysing XFEM can be implemented then.
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1. Introduction

Many problems in physics, engineering, and other fields contain a certain level of coupling

between different physical systems, such as the coupling between fluid and structure in fiuid-

structure interaction problems, and the coupling among different flows in multi-phase flows

problems. An interface where the coupling takes place is generally encountered in such kind of

problems, and, consequently, the numerical discretization of the interface problem is important

in applied sciences and mathematics. In this paper, we take the diffusion equation

−∇ · (α(x)∇u) = f, (1.1)

as a model problem, and study its interface problem. Namely, the underlying domain is assumed

to be divided to two subdomains by an interface, such that α is smooth on each subdomain,

but not smooth on the whole domain. The model problem is a fundamental one in numerical

analysis, and very incomplete literature review can be found in, e.g., [4,5,14,30,31] and below.

Different from problem with smooth coefficient, the existence of an interface for diffusion

equation can invalidate the global smoothness of the solution of the system, and the accuracy

of the standard finite element method is limited when used for such problems. As the loss of
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accuracy occurs near the interface, where the solution is no longer smooth, the obstacle can be

circumvented by implementing a body-fitted (or interface-resolved) grid. In this approach, the

“bad part” of the solution that may not be well approximated is restricted in a narrow region

surrounding the interface. We refer the reader to [30] for an asymptotic optimal error estimate

on body-fitted grid:

‖u− uI‖0,Ω + h|u− uI |1,Ω ≤ C| log h|1/2h2|u|2,Ω1∪Ω2 ,

where uI is the linear element interpolation for u ∈ H1(Ω)∩H2(Ω1∪Ω2). We use |w|m,Ω1∪Ω2 or

‖w‖m,Ω1∪Ω2 to denote |w|m,Ω1 + |w|m,Ω2 or ‖w‖m,Ω1 + ‖w‖m,Ω2, respectively, for w ∈ Hm(Ω1 ∪
Ω2) := {v ∈ L2(Ω) : v|Ωi

∈ Hm(Ωi), i = 1, 2}. A sharper estimate without the logarithmic

factor was given in Bramble and King [4] (1996):

‖u− uI‖0,Ω + h|u− uI |1,Ω 6 Ch2|u|2,Ω1∪Ω2 . (1.2)

We also refer to [5, 14, 31] for related discussions. Unfortunately, it is usually a nontrivial

and time-consuming task to construct good interface-fitted meshes for problems involving ge-

ometrically complicated interfaces. Another idea is to add some basis functions which can be

non-smooth around the interface so that the nonsmooth part of the solution can be accurately

captured. By enriching the finite element space with local basis functions that can resolve the

interface, numerous modified methods based only on simple Cartesian grids are proposed. For

finite element methods, we refer to the work of [6, 16] for elliptic problems with discontinuous

coefficients, where finite element basis functions are. modified at the coefficients discontinuity.

Extra work around the interface can also be recognised implemented in the finite difference

setting; we refer to, e.g., [24] for the immersed boundary method, to [13, 15] for the immersed

interface method, to [19] for the ghost fluid method and etc..

The extended finite element method (XFEM) falls into the category of the second approach.

The XFEM extends the classical finite element method by enriching the solution space locally

around the interface with nonsmooth functions, and it is realized through the partition of unity

concept. Developed by Belytschko and his collaborators ([3,21]), the XFEM is originally used for

modelling crack growth, and has now been used widely in crack propagation ([3,8,21,22]), fluid-

structure interaction (FSI) ([9, 28]), multi-phase flows ([10]), and other multi-physics problems

that involve interfaces. This approach provides accurate approximation for the problems with

jumps, singularities, and other locally nonsmooth features within elements. We refer to [7] and

the reference therein for a historical account for XFEM.

The Nitsche-XFEM scheme presented in [11] is a special kind of XFEM which can also be

regarded as the coupling of the continuous finite element method and discontinuous Galerkin

(DG) method. In [11], Nitsche’s formulation of an elliptic interface problem was introduced, and

then the extended finite element space is constructed by enriching the standard finite element

space with functions that are completely discontinuous across the interface; stabilisation terms

are then needed for the stability of the scheme. The Nitsche-XFEM uses essentially piecewise

polynomials and flexibility can be expected respectively in designing schemes of various orders

and in implementing. The optimality of the Nitsche-XFEM scheme for interface problem is

proved when the XFE space consists of linear continuous piecewise basis functions and extended

basis functions constructed by partition of unity in [11]. Technically, a crucial fact is that the

gradient of a linear polynomial is constant. This fact does not hold for polynomials of higher

degrees, and so far as we know, the analysis of the high-order Nitsche-XFEM is still absent.


