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Abstract

In this paper, a hybird approximation scheme for an optimal control problem governed

by an elliptic equation with random field in its coefficients is considered. The random

coefficients are smooth in the physical space and depend on a large number of random

variables in the probability space. The necessary and sufficient optimality conditions for

the optimal control problem are obtained. The scheme is established to approximate the

optimality system through the discretization by using finite volume element method for

the spatial space and a sparse grid stochastic collocation method based on the Smolyak

approximation for the probability space, respectively. This scheme naturally leads to the

discrete solutions of an uncoupled deterministic problem. The existence and uniqueness

of the discrete solutions are proved. A priori error estimates are derived for the state,

the co-state and the control variables. Numerical examples are presented to illustrate our

theoretical results.

Mathematics subject classification: 65N06, 65B99.

Key words: Optimal control problem, Random elliptic equations, Finite volume element,

Sparse grid, Smolyak approximation, A priori error estimates.

1. Introduction

Optimal control problems governed by partial differential equations (PDEs) have been a

major research topic in applied mathematics and control science and engineering. Computa-

tional methods for deterministic optimal control problems governed by PDEs have been well

developed and investigated for several decades [12,17–23,30,32,33,35]. Among them, the finite

volume element approximation plays an important role in numerical methods for these prob-

lems. Because this method has some crucial physical conservation properties of the original

problem locally, it is popular in computational fluid mechanics. There have been extensive

studies on this topic, such as for elliptic equations [22] and hyperbolic equations [23].

Uncertainty, such as uncertain parameters, arises in many complex real-world problems of

physical and engineering interests. It is well known that these problems can be described by d-

ifferent kinds of stochastic partial differential equations (SPDEs). The well-known Monte Carlo
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(MC) method is the most commonly used method for simulating SPDEs and dealing with the

statistic characteristics of the solution [9,28]. Although MC method only needs to do repetitive

deterministic simulations, it is a rather computationally expensive method for the reason that

the statistic convergence rate is relatively slow, especialy when there are large amounts of com-

putations in the deterministic systems. Another alternative to the Monte Carlo method is the

so-called stochastic Galerkin method [11,14] for solving SPDEs with random fields input data.

This method allows us to utilize standard approximations in physical space and polynomial ap-

proximation in the probability space, but in general, this technique requires to solve a system

of equations that couples all degrees of freedom when approximating the stochastic systems.

Due to this issue, the stochastic collocation method has gained much attention recently in the

computational community [4,5,26,27,38]. Stochastic collocation method consists of a Galerkin

approximation in physical space and a collocation in the zeros of suitable tensor product or-

thogonal polynomials (Gauss points) in the probability space [4]. Compared with stochastic

Galerkin methods, this method solves uncoupled deterministic PDEs at the collocation points

that are trivially parallelizable, as in the Monte Carlo method.

For optimal control problem governed by SPDEs, there have been many works based the

finite element approximation for the physical space such as [31, 34]. To our best knowledge,

there has been a lack of a finite volume element approximation of optimal control problem with

control constraints governed by any SPDEs.

In this paper, we consider a hybird approximation scheme for an optimal control problem

governed by an elliptic equation with random field in its coefficients. The random coefficients

are smooth in the physical space and depend on a large number of random variables in the

probability space. The plan of the paper is as follows. In Section 2, we introduce some function

spaces and the stochastic optimal control problem. By applying the well-known Lions’ lemma

to the optimal control problem, we obtain the necessary and sufficient optimality conditions.

In Section 3, we discuss the finite dimensional representation of stochastic fields, obtain the

finite dimensional optimal control problem and its optimality systems. In Section 4, we develop

the scheme to approximate the optimality systems by using a sparse grid stochastic collocation

method based on the Smolyak approximation for the probability space and a finite volume

element approximation for the physical space, and naturally leads to the discrete solutions of

an uncoupled deterministic problem. In Section 5, we prove the existence and uniqueness for

the discrete solutions. A priori error estimations for the stochastic optimal control problem are

derived in Section 6. Finally, numerical examples for both low and high random dimensions

are presented to illustrate our theoretical results in Section 7.

2. Notations and Model Control Problem

2.1. Function Spaces and Notations

Let D be a convex bounded polygonal spatial domain in Rd(1 ≤ d ≤ 3) with boundary

∂D and B(D) be the Borel σ-algebra generated by the open subset of D. Let (Ω,F , P ) be

a complete probability space, where Ω is a set of outcomes, F is a σ-algebra of events and

P : F → [0, 1] is a probability measure. Let Y = (Y1(ω), · · · , YN (ω)) be an RN−valued random

variable in (Ω,F , P ), and for q ∈ [1,∞), let (LqP (Ω))
N be the set comprising those random

variables Y with
∑N
i=1

∫
Ω
|Yi(ω)|qdP (ω) <∞. If Y ∈ L1

P (Ω), we denote its expectation by

E[Y ] =

∫

Ω

Y (ω)dP (ω) =

∫

RN

ydµY (y),


