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Abstract

In this article, we propose a space-time Multi-Index Monte Carlo (MIMC) estimator for

a one-dimensional parabolic stochastic partial differential equation (SPDE) of Zakai type.

We compare the complexity with the Multilevel Monte Carlo (MLMC) method of Giles

and Reisinger (2012), and find, by means of Fourier analysis, that the MIMC method: (i)

has suboptimal complexity of O(ε−2| log ε|3) for a root mean square error (RMSE) ε if the

same spatial discretisation as in the MLMC method is used; (ii) has a better complexity

of O(ε−2| log ε|) if a carefully adapted discretisation is used; (iii) has to be adapted for

non-smooth functionals. Numerical tests confirm these findings empirically.
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1. Introduction

Stochastic partial differential equations (SPDEs) have become an area of active research

over the last few decades. Several classes of methods have been developed to solve SPDEs

numerically, including finite difference schemes [5, 11–13], finite element schemes [19, 28], and

stochastic Taylor schemes [16, 17].

This article is motivated by Zakai SPDEs of the form (see [9]),

dv(t, x) =

(
1

2

∂2

∂x2

[
a(x)v(t, x)

]
− ∂

∂x

[
b(x)v(t, x)

])
dt− ∂

∂x

[
γ(x)v(t, x)

]
dMt, (1.1)

where M is a standard Brownian motion and a, b and γ suitably chosen coefficient functions.

This Zakai equation arises from a nonlinear filtering problem: given an observation process M

and a signal process X , we want to estimate the conditional distribution of X given M . If X

satisfies

Xt = X0 +

∫ t

0

β(Xs) ds+

∫ t

0

σ(Xs) dBs +

∫ t

0

γ(Xs) dMs,

where B and M are independent standard Brownian motions, and the distribution function has

a density v, it is proved in [21] that v satisfies (1.1) with

a = σ2 + γ2, b = β.

The conditional (on M) distribution function is then

Lx
t =

∫ x

−∞
v(t, ξ) dξ = 1−

∫ ∞

x

v(t, ξ) dξ,
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and it is the goal of this article to estimate the expectation of functionals of this form.

For simplicity, we restrict ourselves to the special case

dv = −µ
∂v

∂x
dt+

1

2

∂2v

∂x2
dt−√

ρ
∂v

∂x
dMt, (t, x) ∈ (0, T )× R, (1.2)

where T > 0, M is a standard Brownian motion, and µ and 0 ≤ ρ < 1 are real-valued

parameters. This is a special case of (1.1) where σ =
√
1− ρ, γ =

√
ρ, β = µ.

Moreover, v in (1.2) describes the limit empirical measure, as N → ∞, of a large exchange-

able particle system [21],

dX i
t = µ dt+

√
1− ρ dW i

t +
√
ρdMt, for 1 ≤ i ≤ N, (1.3)

where W i
t and Mt are independent standard Brownian motions.

A direct application of this model is the large portfolio credit model [3]. Assume the market

consists of N different firms where X i
t are “distance-to-default” processes. Then the functional

of interest is the loss

Lt = 1−
∫ ∞

0

v(t, x) dx, (1.4)

i.e., the mass lost at the absorbing boundary. In the credit risk application of [2], L describes

the loss in a structural credit model, i.e., the fraction of firms whose values have crossed zero

and which are considered defaulted. The values of credit products are often functions of the

loss Lt.

Generally, the solution to (1.1) is not known analytically and has to be approximated numer-

ically. A survey of methods is given in [9], and we focus here on recent applications of multilevel

methods as they pertain to this article. Giles and Reisinger [8] used an explicit Milstein finite

difference approximation to the solution of (1.2). By using Fourier analysis, this scheme can be

shown to give first order of convergence in the timestep and second order in the spatial mesh

size. One constraint in this paper is that the timestep needs to be small enough to ensure

stability. Inspired by the numerical analysis of SDEs in [1, 27], [25] extended the discretisation

to an implicit method on the basis of the σ-θ time-stepping scheme, where the drift and the

deterministic part of the double stochastic integral are taken implicit. Fourier analysis shows

that the convergence order is the same as in the explicit Milstein scheme, however, this scheme

is unconditionally mean-square stable under a constraint on the correlation ρ in (1.2). This

unconditional stability is essential for our application as detailed below.

In this paper, we compare a new Multi-index Monte Carlo (MIMC) scheme in the spirit

of [14], with the Multilevel Monte Carlo (MLMC) method of [6]. The MLMC method utilises a

sequence of approximations P0, P1, . . . , Pl∗ to a random variable P with increasing accuracy but

also higher cost for increasing l. In the simulation of an SDE, l would typically be the refinement

level of the time mesh, with 2l time steps. The MLMC estimator is based on recursive control

variates embedded in the identity

E [Pl∗ ] = E
[
P0

]
+

l∗∑

l=1

E
[
Pl − Pl−1

]
,

where l∗ is a maximum refinement level. The goal is to estimate E[Pl∗ ] by independent esti-

mation of the summands, in a way that the root mean square error (RMSE) is comparable to

the bias, but with a much reduced computational complexity. If fewer samples are needed for


