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Abstract

The present article is concerned with the numerical solution of boundary integral equa-

tions by an adaptive wavelet boundary element method. This method approximates the

solution with a computational complexity that is proportional to the solution’s best N-term

approximation. The focus of this article is on algorithmic issues which includes the crucial

building blocks and details about the efficient implementation. By numerical examples

for the Laplace equation and the Helmholtz equation, solved for different geometries and

right-hand sides, we validate the feasibility and efficiency of the adaptive wavelet boundary

element method.
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1. Introduction

In science and engineering, one often comes across partial differential equations, some of

which can be formulated as boundary integral equations on the boundary of the domain of

interest. Solving the original problem would result in having to discretize the problem in a

domain (e.g. with finite element methods), which would lead to a sparse but extremely large

system of linear equations, especially in the three-dimensional situation. Rewriting the problem

by a boundary integral equation not only reduces the dimensionality by one, but does give the

possibility to solve also exterior boundary value problems. Particularly for such problems, this

approach brings many advantages, since it is not necessary to find a way (e.g. by introducing

artificial boundaries) to handle the infinite expansion of the domain. Of course, this advantage

does not come entirely without cost. Since the involved operators are not local, the resulting

matrices are dense and the complexity to solve the linear system by the boundary element

method is at least O(N2), with N denoting the degrees of freedom.

Modern approaches like the fast multipole method [1,2], the panel clustering [3], the adaptive

cross approximation [4, 5], or hierarchical matrices [6, 7] are known to reduce the complexity

to log-linear or even linear cost. Another approach is wavelet matrix compression [8]. The

wavelets’ vanishing moments lead, in combination with the fact that the kernel of the integral

operator becomes smoother when getting farther away from the diagonal, to a quasi-sparse

system matrix. As shown in [9], only O(N) matrix entries are relevant for maintaining the

convergence rate of the underlying Galerkin scheme.

A further issue to be addressed for the efficient solution of boundary integral equations is

the one of adaptivity. For non-smooth geometries or right-hand sides, it is necessary being able

to resolve specific parts of the geometry, while other parts could stay coarse. In contrast to
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uniform refinement, an adaptive refinement reduces the degrees of freedom drastically without

compromising the accuracy. This means that not only a lot of computation power can be

saved, but also a lot of memory, making the computation of certain problems possible in the

first place. Efficient and reliable a posteriori error estimators have first been introduced in [10]

and convergence of adaptive refinements for traditional boundary element methods has been

established in [11, 12]. But we are not aware of an implementation which combines these error

estimators with fast boundary element methods.

We thus follow here an different approach which has been proposed in [13, 14] for local

operators and in [9,15] for nonlocal operators. Namely, we cast the boundary integral equation

into an infinite system of linear equations and solve it then approximately by an iterative

method. As the application of the infinite system matrix has to be approximated during

the solution process, we have to choose a certain portion out of this infinite matrix. Hence,

refinement rather means that more wavelets are added. In fact, we aim at choosing the N

wavelets which will contribute most to the approximate solution. This concept is referred to as

the best N -term approximation, see e.g. [16].

Where the efficient computation of the matrix entries is the most demanding and time

consuming part of the whole implementation, it is not possible to achieve efficiency without

using the appropriate adaptive structures. It is absolutely necessary to work with element

and wavelet trees as already proposed in [17, 18]. We will introduce related building blocks

Rhs, Coarse, Apply, and Solve, which are already known in theory from e.g. [13,14,18,19].

The implementation of these routines is discussed in the present context of boundary element

methods. The numerical method is able to compute the solution of the boundary integral

equation in asymptotically optimal complexity. This means that any target accuracy can be

achieved at a computational expense that stays proportional to the number of degrees of freedom

(within the setting determined by an underlying wavelet basis) that would ideally be necessary

for realizing that target accuracy if full knowledge about the unknown solution were given.

In this article, besides presenting results for the single-layer operator of the Laplacian, which

is symmetric and positive definite, we also present results for the Brackhage-Werner formula-

tion of the (low-frequency) Helmholtz equation. We thus arrive at a linear combination of the

acoustic single-layer operator and the acoustic double-layer operator. Here, the theory of [9,15]

does not hold anymore. Nevertheless, the arguments of [20] are applicable for proving opti-

mality of the underlying adaptive scheme since the operator under consideration is a compact

perturbation of a symmetric and positive definite operator.

The outline of this article is as follows. At first, in Section 2, we introduce the boundary

integral equation and the surface representation under consideration. Then, in Section 3, we

present the piecewise constant wavelet basis which we will employ to cast the boundary integral

equation into an equivalent, bi-infinite system of linear equations. Section 4 is dedicated to the

realization of an adaptive algorithm of optimal complexity. Numerical results are given in

Section 5. Finally, in Section 6, we state concluding remarks.

2. Boundary Integral Equations and Surface Representation

Let Ω ⊂ R
3 be a bounded and simply connected domain. Its boundary Γ := ∂Ω is assumed

to be composed by a union of smooth, four-sided patches Γi:

Γ =

M⋃

i=1

Γi, Γi = γi(�) i = 1, . . . ,M.


