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Abstract

The modified Hermitian and skew-Hermitian splitting (MHSS) iteration method and

preconditioned MHSS (PMHSS) iteration method were introduced respectively. In the

paper, on the basis of the MHSS iteration method, we present a PMHSS iteration method

for solving large sparse continuous Sylvester equations with non-Hermitian and complex

symmetric positive definite/semi-definite matrices. Under suitable conditions, we prove

the convergence of the PMHSS iteration method and discuss the spectral properties of the

preconditioned matrix. Moreover, to reduce the computing cost, we establish an inexact

variant of the PMHSS iteration method and analyze its convergence property in detail.

Numerical results show that the PMHSS iteration method and its inexact variant are

efficient and robust solvers for this class of continuous Sylvester equations.
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1. Introduction

For solving a class of complex symmetric linear systems (W + iT )x = b, where i =
√
−1,

W,T ∈ Rn×n are real, symmetric, and positive semidefinite matrices with at least one of them,

being positive definite, Bai et al. introduced the MHSS iteration method [1] and the PMHSS

iteration method [2, 3], respectively. Moreover, for solving large sparse continuous Sylvester

equations with non-Hermitian and positive definite/semidefinite matrices, Bai presented a Her-

mitian and skew-Hermitian splitting (HSS) iteration method [4,5]. For more details about the

HSS iteration method and theory, we refer to [5–11] and the references therein. According to

the HSS iteration method, Zhou et al. proposed a MHSS iteration method for solving large

sparse continuous Sylvester equations with non-Hermitian and complex symmetric positive def-

inite/semidefinite matrices [12]. Recently, a MHSS iteration method was also presented for

solving the complex linear matrix equation AXB = C [13,14].

In the paper, we consider the iteration solution of the following continuous Sylvester equation

AX +XB = F, (1.1)

where A ∈ Cm×m, B ∈ Cn×n and F ∈ Cm×n are given complex matrices. Assume that A, B

and F are large and sparse matrices. Let A = W + iT and B = U + iV , where W,T ∈ Rm×m,

U, V ∈ Rn×n are real symmetric matrices, with W being positive definite and T,U, V positive

semi-definite. We assume T ̸= 0, which implies that A is non-Hermitian. The continuous
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Sylvester equation with A = W + iT and B = U + iV may arise from numerical solutions of

PDEs with complex coefficients [1, 2]. A Lyapunov equation is a special case of the Sylvester

equations, where B = A∗ and F = F ∗. It is well known that the continuous Sylvester equation

(1.1) has a unique solution, under the assumes that there is no common eigenvalue between

A and −B [4]. The continuous Sylvester equation (1.1) is mathematically equivalent to the

system of linear equations

Ax = f, (1.2)

where A = I ⊗ A + BT ⊗ I, and the vector x and f contain the concatenated columns of

the matrices X and F , respectively, with ⊗ being the Kronecker product symbol and BT

representing the transpose of the matrix B.

The matrix equation (1.1) plays an important role in numerical methods for differential

equations with complex coefficients [1,2,4], iterative methods for algebraic Riccati equations [15–

17], matrix nearness problem [18], image restoration [19] and other problems; see [4, 12, 20–31]

and the references therein. Recent interest is directed more towards large and sparse matrices

A and B, and F = CD∗ with very low rank, where C and D have only a few columns [32].

In these cases, the standard methods are often too expensive to be practical, and iterative

methods become more viable choices [14, 25]. The standard direct method for solving (1.1)

is due to Bartels and Stewart [26]. However, this method requires dense matrix operations

such as the Schur decomposition; thus is not applicable in large-scale settings. For large-scale

settings, iterative methods have been developed that take advantage of the sparsity and the

low-rank structure. The two most common ones are the Alternating Direction Implicit (ADI)

method [25, 30, 32] and the (rational) Krylov projection methods [28]. Advantages of Krylov

subspace based algorithms over ADI iterations are that no knowledge about the spectra of A

and B is needed and (except for [27]) no linear systems of equations with (shifted) A and B

have to be solved. But ADI iterations often enable faster convergence if (sub) optimal shifts

to A and B can be effectively estimated [25]. Recently, Ding and Chen proposed a few simple

iterative schemes, namely, Gradient based iterative (GI) algorithms, for matrix equations [29]

(and others therein). The schemes, resembling the classical Jacobi and Gaussian iterations

for linear systems, are easy to implement and cost little per step but converge linearly at the

best [25,29,33,34].

In the paper, we mainly conduct the idea of the HSS based iteration method to solve the

continuous Sylvester equation (1.1), see, e.g., [1–14,17,19–23,33–35] and references therein. Bai,

Golub and Ng in [5] firstly proposed the Hermitian and skew-Hermitian splitting (HSS) method

for non-Hermitian positive-definite linear systems. Because of the effectiveness and robustness

of the HSS method, it is extensively studied and extended to other equations and conditions,

see e.g. [6–9] and references therein. A considerable advantage of the MHSS iteration [1, 12]

consists in the fact that the solutions of the shifted skew-Hermitian sub-system of the continuous

Sylvester equation with coefficient matrices αI+iT and βI+iV are avoided and only two linear

sub-systems with real and symmetric positive definite coefficient matrices need to be solved at

each step [1,12]. Therefore, operations on these matrices can be carried out using real arithmetic

only. To the best of our knowledge, there are not a preconditioned MHSS iteration to solve

the continuous Sylvester equation (1.1) [2,9,36,37]. Motivated by this, we further propose and

analyze a new iteration approach called PMHSS for solving the continuous Sylvester equation

(1.1).

The rest of this paper is organized as follows. In Section 2, after a brief introduction of the

Smith method [17, 38], the MHSS iteration method [1, 12, 13], we present a PMHSS iteration


