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Abstract

In this paper, we propose an extended Levenberg-Marquardt (ELM) framework that

generalizes the classic Levenberg-Marquardt (LM) method to solve the unconstrained min-

imization problem min ρ (r(x)), where r : R
n → R

m and ρ : R
m → R. We also develop

a few inexact variants which generalize ELM to the cases where the inner subproblem is

not solved exactly and the Jacobian is simplified, or perturbed. Global convergence and

local superlinear convergence are established under certain suitable conditions. Numerical

results show that our methods are promising.
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1. Introduction

Many applications can be written as minimization problems of the form

min
x

φ(x) := ρ (r(x)) , (1.1)

where r : R
n → R

m and ρ : R
m → R. The function r is often referred to as the residual or

modeling error, and ρ the penalty function of residual r. When ρ(u) = 1
2‖u‖

2, (1.1) is the well

known nonlinear least squares problem

min
x

1

2
‖r(x)‖2. (1.2)

Throughout this paper, we denote ‖ · ‖ as the L2-norm. Another commonly seen example is

that

min
x

m∑

i=1

ρi(ri(x)), (1.3)

where ρ(u) takes the form

ρ(u) = ρ1(u1) + · · ·+ ρm(um),
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Fig. 1.1. Penalty function, its gradient, and Hessian of some common models: Laplace (red dash-dot),

Tukey (green dash), and Student’s t− (blue line).

and ρi : R → R is a function of scalar variables. Some examples of ρ are illustrated in Figure

1.1. More frequently used penalty functions are summarized in Table 6.1.

A general method that solves the unconstrained minimization problem (1.1) is Newton’s

method. Let fk := f(xk) be a function f evaluated at point xk. At each iteration, the method

finds a direction by solving the quadratic approximation problem

min
d

φk + gTk d+
1

2
dTHkd, (1.4)

where gk := ∇φk and Hk := ∇2φk are the gradient and Hessian of φ. It is known that this

method has fast local convergence. Since the cost to evaluate the Hessian Hk may be expensive

in general, methods using only the gradient information are preferred.

When ρ(u) = 1
2‖u‖

2, the problem (1.1) degenerates to the classic nonlinear least squares

problem (1.2). The Levenberg-Marquardt (LM) method [13,16] can be regarded as a regularized

Gauss-Newton method that solves the nonlinear least squares problem (1.2) iteratively by a

sequence of linear least squares problems

min
d

1

2
‖rk + Jkd‖

2 +
τk
2
‖d‖2 , (1.5)

where J(x) := ∇r(x)T is the Jacobian matrix and τk > 0 is some positive constant. The

Hessian Hk in (1.4) is approximated by the positive semidefinite matrix JT
k Jk. Since Jk = ∇rTk

is already contained in the first-order derivative, we obtain ∇2φk almost for free.

The LM method is more computationally attractive compared to the Gauss-Newton method

or the Newton’s method since it avoids singularity and does not evaluate the second order

derivative. It also enjoys a quadratic convergent rate when τk = ‖rk‖
p for p ∈ [1, 2], see,

e.g., [10, 24]. These advantages motivate us to extend the LM method to the general problem

(1.1).

For large scale applications, it is impractical to solve the problem (1.4) exactly. An iterative

approach such as the conjugate gradient (CG) method is more favorable. However, the CG

method is designed to solve positive definite systems, and Hk may have negative eigenvalues

when the iterate is not close to the solution. The truncated CG method ([22], for example)

terminates the CG iteration as soon as negativity is detected. Usually, it is also equipped with

a line search or trust region method for better global convergence.

In this paper, we generalize the classic LM method to solve the composite function min-

imization problem (1.1). A weighted least squares method is incorporated to simplify the

approximated Hessian and accelerate the computation at initial steps when the residuals are


