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Abstract

An algorithmic framework, based on the difference of convex functions algorithm (D-

CA), is proposed for minimizing a class of concave sparse metrics for compressed sensing

problems. The resulting algorithm iterates a sequence of ℓ1 minimization problems. An

exact sparse recovery theory is established to show that the proposed framework always

improves on the basis pursuit (ℓ1 minimization) and inherits robustness from it. Numerical

examples on success rates of sparse solution recovery illustrate further that, unlike most

existing non-convex compressed sensing solvers in the literature, our method always out-

performs basis pursuit, no matter how ill-conditioned the measurement matrix is. More-

over, the iterative ℓ1 (IL1) algorithm lead by a wide margin the state-of-the-art algorithms

on ℓ1/2 and logarithimic minimizations in the strongly coherent (highly ill-conditioned)

regime, despite the same objective functions. Last but not least, in the application of

magnetic resonance imaging (MRI), IL1 algorithm easily recovers the phantom image with

just 7 line projections.
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1. Introduction

Compressed sensing (CS) techniques [5, 6, 8, 17] enable efficient reconstruction of a sparse

signal under linear measurements far less than its physical dimension. Mathematically, CS

aims to recover an n-dimensional vector x̄ ∈ R
n with few non-zero components from an under-

determined linear system Ax = Ax̄ of just m ≪ n equations, where A ∈ R
m×n is a known

measurement matrix. The first CS technique is the convex ℓ1 minimization or the so-called

basis pursuit [15]:

min
x∈Rn

‖x‖1 s.t. Ax = Ax̄. (1.1)

Breakthrough results [8] have established that when matrix A satisfies certain restricted isom-

etry property (RIP), the solution to (1.1) is exactly x̄. It was shown that with overwhelming

probability, several random ensembles such as random Gaussian, random Bernoulli, and random

partial Fourier matrices, are of RIP type [8,13,32]. Note that (1.1) is just a minimization prin-

ciple rather than an algorithm for retrieving x̄. Algorithms for solving (1.1) and its associated
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ℓ1 regularization problem [36]:

min
x∈Rn

1

2
‖Ax− b‖2 + λ‖x‖1 (1.2)

include Bregman methods [24, 43], alternating direction algorithms [3, 18, 40], iterative thresh-

olding methods [1, 14] among others [25].

Inspired by the success of basis pursuit, researchers then began to investigate various non-

convex CS models and algorithms. More and more empirical studies have shown that non-

convex CS methods usually outperform basis pursuit when matrix A is RIP-like, in the sense

that they require fewer linear measurements to reconstruct signals of interest. Instead of mini-

mizing ℓ1 norm, it is natural to consider minimization of non-convex (concave) sparse metrics,

for instance, ℓq (quasi-)norm (0 < q < 1) [11, 12, 27], capped-ℓ1 [30, 45], and transformed-

ℓ1 [28,44]. Another category of CS methods in spirit rely on support detection of x̄. To name a

few, there are orthogonal matching pursuit (OMP) [37], iterative hard thresholding (IHT) [2],

(re)weighted-ℓ1 scheme [7], iterative support detection (ISD) [38], and their variations [26,31,46].

On the other hand, it has been proved that even if A is not RIP-like and contains highly

correlated columns, basis pursuit still enables sparse recovery under certain conditions of x̄

involving its support [4]. In this scenario, most of the existing non-convex CS methods, however,

are not that robust to the conditioning of A, as suggested by [41]. Their success rates will drop

as columns of A become more and more correlated. In [41], based on the difference of convex

functions algorithm (DCA) [34,35], the authors propose DCA-ℓ1−2 for minimizing the difference

of ℓ1 and ℓ2 norms [19, 42]. Extensive numerical experiments [29, 30, 41] imply that DCA-ℓ1−2

algorithm consistently outperforms ℓ1 minimization, irrespective of the conditioning of A.

Stimulated by the empirical evidence found in [29,30,41], we propose a general DCA-based

CS framework for the minimization of a class of concave sparse metrics. More precisely, we

consider the reconstruction of a sparse vector x̄ ∈ R
n by minimizing sparsity-promoting metrics:

min
x∈Rn

P (|x|) s.t. Ax = Ax̄. (1.3)

Throughout the paper, we assume that P (x) always takes the form
∑n

i=1 p(xi) unless otherwise

stated, where p defined on [0,+∞) satisfies:

• p is concave and increasing.

• p is continuous with the right derivative p′(0+) > 0.

The first condition encourages zeros in |x| rather than small entries, since p changes rapidly

around the origin; the second one is imposed for the good of the proposed algorithm, as will be

seen later. A number of sparse metrics in the literature enjoy the above properties, including

smoothly clipped absolute deviation (SCAD) [20], capped-ℓ1, transformed-ℓ1, and of course ℓ1
itself. Although ℓq (q ∈ (0, 1)) and logarithm functional do not meet the second condition,

their smoothed versions p(t) = (t + ε)q and p(t) = log(t + ε) are differentiable at zero. These

proposed properties will be essential in the algorithm design as well as in the proof of main

results.

Our proposed algorithm calls for solving a sequence of minimization subproblems. The

objective of each subproblem is ‖x‖1 plus a linear term, which is convex and tractable. We

further validate robustness of this framework, by showing theoretically and numerically that it

performs at least as well as basis pursuit in terms of uniform sparse recovery, independent of

the conditioning of A and sparsity metric.


