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Abstract

This paper studies the Galerkin finite element approximations of a class of stochas-

tic fractional differential equations. The discretization in space is done by a standard

continuous finite element method and almost optimal order error estimates are obtained.

The discretization in time is achieved via the piecewise constant, discontinuous Galerkin

method and a Laplace transform convolution quadrature. We give strong convergence error

estimates for both semidiscrete and fully discrete schemes. The proof is based on the error

estimates for the corresponding deterministic problem. Finally, the numerical example is

carried out to verify the theoretical results.
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1. Introduction

In this paper we will consider the finite element approximations of the following stochastic

fractional differential equations(SFDEs)

{

Dα
t u(t) +Au(t) = I1−α

t Ẇ (t), α ∈ (0, 1), t ∈ [0, T ],

u(0) = u0.
(1.1)

The process {u(t)}t∈[0,T ], defined on a filtered probability space (Ω,F ,P, {Ft}t≥0) with a normal

filtration {Ft}t≥0, takes values in a separable Hilbert space H with inner product (·, ·) and norm

‖ · ‖. The initial data u0 is H-valued and F0-measurable random variable. The process W is a

nuclear Q-Wiener process with respect to the filtration with values in some separable Hilbert

space U. Let Q be a selfadjoint and positive semidefinite operator with finite trace. The operator

A : D(A) ⊂ H → H is an unbounded, densely defined, linear, selfadjoint operator with compact

inverse.

Equations of the above type have many physical applications in many fields such as turbu-

lence, heterogeneous flows and materials, viscoelasticity and electromagnetic theory [1–3], so

the study of the SFDEs has recently attracted a lot of attention.

In the model (1.1), I1−α
t is the fractional integral operator:

I1−α
t u(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αu(s)ds,
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and Dα
t denotes the Caputo fractional derivative of order α(0 < α < 1) with respect to t and

is defined by [4, 16]

Dα
t u(t) =

1

Γ(1− α)

∫ t

0

(t− s)−α d

ds
u(s)ds.

It is known that for the fractional order α = 1, the fractional derivative Dα
t recovers the canoni-

cal first-order derivative d
dtu(t) and thus the model (1.1) becomes the standard stochastic partial

differential equation (SPDE), the numerical approximations of which have been extensively re-

searched in the literature, see, for example, [17–22,26–30]. However, to our best knowledge, the

numerical analysis of the SFDEs is less studied, we only note that [25].

We note that there are a few papers considering the error estimates of the solution for the

stochastic Volterra equations with a positive-type memory term [15, 23, 24]:

du+

(

A

∫ t

0

b(t− s)u(s)ds

)

dt = dW, u(0) = u0.

This equation is closely related, but different from (1.1). The discretization is achieved via an

implicit Euler scheme and a Laplace transform convolution quadrature in time, and a standard

continuous finite element method in space.

Our aim is to obtain strong convergence error estimates for both semidiscrete and fully

discrete schemes. The discretization in space is done by a standard continuous finite element

method. And the discretization in time is achieved via the piecewise constant, discontinuous

Galerkin method and a Laplace transform convolution quadrature.

The structure of this paper is as follows: In Section 2, we introduce basic notations and

then give the solution representation of (1.1) by using basic properties of the Mittag-Leffler

function. In Section 3, we study the space semidiscrete scheme and derive error estimates for

the standard Galerkin finite element method with smooth initial data. Almost optimal order

error estimates are obtained. In Section 4, by making use of the discontinuous Galerkin method

and a Laplace transform convolution quadrature, we prove strong error estimates for the time

semidiscrete scheme with smooth initial data. In Section 5, we gather the results from the

preceding sections and give the error estimate for the fully discrete scheme. Finally, in section

6, the numerical example is carried out to verify the theoretical results.

2. Preliminaries

Throughout the paper, we use the letter C to denote a constant that may not be the same

form from one occurrence to another.

Let U and H be real separable Hilbert spaces with inner product (·, ·) and norms ‖ · ‖U and

‖ · ‖H . L(U,H) denotes the space of bounded linear operators from U to H .

Let (Ω,F ,P) be a probability space. We define L2(Ω, H) to be the space of H-valued square

integrable random variables with norm

‖v‖L2(Ω,H) = E(‖v‖2H)
1
2 =

(∫

Ω

‖v(w)‖2HdP(w)

)
1
2

,

where E stands for expected value. Let Q be a selfadjoint, positive semidefinite operator, with

Tr(Q) <∞, where Tr(Q) denotes the trace of Q. The stochastic processW (t) is a U-valued Q-

Wiener process on a given probability space (Ω,F ,P). Furthermore, W (t) has the orthogonal


