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Abstract

In this paper, fourth-order compact finite difference schemes are proposed for solving

Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric

and in some cases that the solution depends both of independent variables. The idea of the

immersed interface method is applied to deal with the discontinuities in the wave number

and certain derivatives of the solution. Numerical experiments are included to confirm the

accuracy and efficiency of the proposed method.
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1. Introduction

Helmholtz equations can be used to model some important physical phenomena, such as

acoustic wave scattering, noise reduction in silencers, water wave propagation etc. Many efforts

have been made to develop more efficient and accurate numerical methods for the solution of

Helmholtz equation, such as the boundary element method [13], finite element methods [11,12]

and a few finite difference methods mentioned below. In [1], Harari and Turkel developed

schemes with fourth order accurate local truncation errors on uniform meshes and third order

in the nonuniform case. The methods are based on Padé expansions, and was extended by

Singer and Turkel [2] to Neumann boundary conditions. Another method of approximating

the Helmholtz equation with higher order accuracy were developed in [3-5]. Applications of

the Helmholtz equation with discontinuous media can be found, for example, in [6,7]. Those

methods mentioned above have been successfully developed in solving the Helmholtz equation

when k is constant. When k is a piecewise constant, it becomes more difficult to develop high

order methods [14,15]. Their schemes can keep global higher-order accuracy in the presence of

discontinuities with piecewise wave number.

In this paper, we consider high order finite difference method for the Helmholtz equations

with a piecewise wave number in the polar coordinates. The wave number is assumed to be

piecewise constant and has a finite jump across interfaces that are few isolated circles. We
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propose fourth order compact schemes for Helmholtz equation with discontinuous coefficient

in polar coordinates for the axis-symmetric and some cases that the solution depends both

of independent variables by exploiting the idea introduced in [10] and the immersed interface

method [8,9].

The rest of paper is organized as follows. We construct the compact scheme for the axis-

symmetric Helmholtz equation in the polar coordinates with discontinuous wave number and

show some numerical results to confirm our conclusion in the next section. Then, we derive

a compact fourth order scheme for some cases that the solution depends both of independent

variables in the polar coordinates followed by numerical examples. We present our conclusions

and discussions of possible future directions in this subject.

2. The Axis-symmetric Problem

We start our discussion for the axis-symmetric which becomes essentially a one dimensional

problem in polar coordinates
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)
+ k2u = f, r ∈ D− ∪D+, a ≤ r ≤ b, (2.1)

where wave number k is a piecewise constant, α is an interface, which separates the region into

two parts D− = (a, α) and D+ = (α, b) , The jump conditions are defined as the difference of

the limiting values from two different sides of interface

[u]r=α = lim
r→α,r∈D+

u (r)− lim
r→α,r∈D−

u (r) = u+ (α)− u− (α) ,

across the interface, the solution satisfies the following natural jump conditions

[u] = 0, [ur] = 0. (2.2)

2.1. Fourth-order compact scheme at regular and irregular points

Without loss of generality, we generate a uniform mesh in the interval (a,b), ri = (i− 1)h,

i = 1, ...,M+1, where h = (b−a)/M is the mesh size. Exploiting the fourth-order compact finite

difference scheme introduced in [10], our fourth-order compact finite scheme can be written as

b0um+1 + b1um + b2um−1 = Fm, (2.3a)

where

b0 =
rm+ 1

2

h2
+

h

12r3m
, (2.3b)

b1 =
rm+ 1

2
+ rm− 1

2

h2
− k2

(
− h2

12r2m
+

h2k2

12
− 1

)
, (2.3c)

b2 =
rm− 1

2

h2
− h

12r3m
, (2.3d)

Fm =

(
1− k2h2

12
+

h2

12r2m

)
fm +

h2

12rm
f

′

m +
h2

12
f

′′

m, (2.3e)

and f = f(r) is a known function. We can solve Eq. (2.1) by scheme (2.3) when k is a constant.

However, we have to modify scheme (2.3) for keeping high order accuracy when k is a piecewise


