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Abstract

A new numerical algorithm for telegraph equations with homogeneous boundary con-

ditions is proposed. Due to the damping terms in telegraph equations, there is no royal

conservation law according to Noether’s theorem. The algorithm origins from the discovery

of a transform applied to a telegraph equation, which transforms the telegraph equation

to a Klein-Gordon equation. The Symplectic method is then brought in this algorithm

to solve the Klein-Gordon equation, which is based on the fact that the Klein-Gordon

equation with the homogeneous boundary condition is a perfect Hamiltonian system and

the symplectic method works very well for Hamiltonian systems. The transformation itself

and the inverse transformation theoretically bring no error to the numerical computation.

Therefore the error only comes from the symplectic scheme chosen. The telegraph equation

is finally explicitly computed when an explicit symplectic scheme is utilized. A relatively

long time result can be expected due to the application of the symplectic method. Mean-

while, we present order analysis for both one-dimensional and multi-dimensional cases in

the paper. The efficiency of this approach is demonstrated with numerical examples.
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1. Introduction

Telegraph equation, also known as transmission line equation, describes the rule within

transmission lines. Transmission lines, such as parallel line (ladder line), coaxial cable, stripline,

and microstrip, have broad applications in signal transfer, pulse generation, stub filters, and

so on. There are generally two means of solving telegraph equations. One is seeking for exact

solutions, for instance, by Fourier transform. The exact solution, however, is only available for

simple cases. The other is seeking for numerical solutions. Based on the way of solving the

equation numerically, we can divide them into two groups, analytical method and numerical

method. An analytical method solves the equation by iteration of waveform. The waveform goes

close to the iterative solution. The well known analytical methods are Exp-function method [11],

Adomian decomposition method (ADM) [14], variational iteration method (VIM) [16] and

homotopy perturbation method (HPM) [13]. A numerical method, however, solves the equation

on space and time grids. Numerical methods known for telegraph equation include differential

quadrature method (DQM) [8], alternating direction implicit (ADI) scheme [4], and weighted

essentially non-oscillatory (WENO) method [1, 15].
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In this paper, we are interested in numerical methods for the following telegraph equation

∂2w(x, t)

∂t2
+ k

∂w(x, t)

∂t
= a2

∂2w(x, t)

∂x2
+ bw(x, t),

w(x, 0) = g1(x), 0 ≤ x ≤ 1,

wt(x, 0) = g2(x), 0 ≤ x ≤ 1,

w(0, t) = 0, 0 ≤ t ≤ T,

w(1, t) = 0, 0 ≤ t ≤ T,

(1.1)

where k > 0, a > 0 and b < 0 are constants. g1(x) and g2(x) are smooth functions, with

compatibility condition g1(0) = 0. w(x, t) ∈ R is the sought function. This equation is derived

from the transmission line problem. An equivalent circuit of the transmission line problem is

shown in Fig. 1.1, where and for (1.1), we have
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1

L1C1
, k =

(
R−1

2
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+

R1

L1

)
, b = −R1R

−1
2

L1C1
.

As far as we know, with a transformation, the telegraph equation (1.1) can be turned into a

system with conservation law. Besides, with the conservation law, we can solve it by symplectic

methods. The advantages of this choice are better long term behavior and the potential explicit

implementation. The transformation is covered in section 2.1.

Fig. 1.1. A schematic representation of the elementary components of a transmission line.

The finite difference method of Eq. (1.1) can be done in two ways. One is taking a full

discretization of the equation, that is, taking an equispaced grid 0 = x0 < x1 < · · · < xN =

1, 0 = t0 < t1 < · · · < tn = T . The full discretization is,

wj+1
i − 2wj

i + wj−1
i

∆t2
+ k

wj+1
i − wj

i

∆t
= a2

wj+1
i+1 − 2wj+1

i + wj+1
i−1

∆x2
+ bwj+1

i , (1.2)

where 1 ≤ i ≤ N − 1 and 1 ≤ j ≤ n− 1 in wj
i stand for space and time grid point respectively,

i.e., w(xi, tj) = wj
i . The other is taking a semi-discretization. Taking an equispaced grid in

space 0 = x0 < x1 < · · · < xN = 1, we get a group of ODEs,

d2Wi

dt2
+ k

dWi

dt
= a2

Wi+1 − 2Wi +Wi−1

∆x2
+ bWi,

where 1 ≤ i ≤ N − 1, and Wi = W (xi, t). Here, space discretization is taken as of order 2.

Setting W = (W1,W2, · · · ,WN−1)
T , we get

d2W

dt2
+ k

dW

dt
= − a2

∆x2
SW + bW, (1.3)


