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Abstract

In this paper, we present a local discontinuous Galerkin (LDG) method for the Allen-

Cahn equation. We prove the energy stability, analyze the optimal convergence rate of

k + 1 in L2 norm and present the (2k + 1)-th order negative-norm estimate of the semi-

discrete LDG method for the Allen-Cahn equation with smooth solution. To relax the

severe time step restriction of explicit time marching methods, we construct a first order

semi-implicit scheme based on the convex splitting principle of the discrete Allen-Cahn

energy and prove the corresponding unconditional energy stability. To achieve high order

temporal accuracy, we employ the semi-implicit spectral deferred correction (SDC) method.

Combining with the unconditionally stable convex splitting scheme, the SDC method can

be high order accurate and stable in our numerical tests. To enhance the efficiency of the

proposed methods, the multigrid solver is adapted to solve the resulting nonlinear algebraic

systems. Numerical studies are presented to confirm that we can achieve optimal accuracy

of O(hk+1) in L2 norm and improve the LDG solution from O(hk+1) to O(h2k+1) with the

accuracy enhancement post-processing technique.
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1. Introduction

In this paper, we develop a local discontinuous Galerkin (LDG) method and consider error

estimates of the LDG method for the Allen-Cahn equation

ut −∆u+
1

ε2
f(u) = 0, (1.1)
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with the initial condition

u(x, 0) = u0(x) (1.2)

in a bounded domain with dimension d ≤ 3. We assume that periodic boundary conditions

are given. It is well-known that the Allen-Cahn equation is a gradient flow with the Liapunov

energy functional

Jε(u) =

∫
Ω

Φε(u)dx, Φε(u) =
1

2
|∇u|2 + 1

ε2
F (u), (1.3)

where F (u) is always positive and f(u) = F ′(u). A typical form of F (u) is

F (u) =
1

4
(u2 − 1)2, f(u) = u3 − u. (1.4)

As in [25], we shall impose a constraint on the potential function F (u) by requiring f(u) to

satisfy

max
u solves Allen-Cahn

|f ′(u)| ≤ L, (1.5)

where L is a positive constant.

The Allen-Cahn equation (1.1) was originally introduced by Allen and Cahn [1] to describe

the motion of anti-phase boundaries in crystalline solids. The function u represents the concen-

tration of one of the two metallic components of the alloy and the positive parameter ε is called

the diffuse interface width parameter. Recently, it has been applied to a wide range of problems

such as the motion by mean curvature flows [14] and crystal growth [26]. In particular, it has

become a basic model equation for the diffuse interface approach developed to study phase

transitions and interfacial dynamics in materials science [5].

Various numerical methods have been developed to solve the Allen-Cahn equation. We

refer the readers to [6,7] for finite difference method. Feng et al. [15] developed an a posteriori

error estimate for finite element approximations of the Allen-Cahn equation. Quasi-optimal

a posteriori error estimates in L∞(0, T ;L2(Ω)) was derived for finite element approximation

in [2]. The numerical approximations of the celebrated Allen-Cahn equation and related diffuse

interface models were studied in [34]. Yang [33] introduced a stabilized semi-implicit (in time)

scheme and a splitting scheme for the equation. Feng et al. [13] recently presented the analysis

for the fully discrete interior penalty discontinuous Galerkin (IP-DG) methods for the Allen-

Cahn equation. In [16], the first- and second-order implicit-explicit schemes with parameters

for solving the Allen-Cahn equation were investigated. Feng, Tang and Yang [17] combined the

semi-implicit spectral deferred correction (SDC) method with energy stable convex splitting

technique to solve a series of phase field models.

In this paper, we present an LDG method for the Allen-Cahn equation and prove its energy

stability, where the energy is defined in (1.3). In addition, the optimal priori error estimate

is also proved in L2 norm for the LDG scheme. By employing a technical dual argument, we

obtain an a priori error estimate in the negative-order norm for smooth solutions of Allen-Cahn

equation, which is 2k + 1, higher than the (k + 1)-th order in L2-norm, where k (k ≥ 1) is

the highest degree polynomial used in the approximation. This negative norm error estimate is

very essential for the accuracy enhancement post-processing technique [19,20]. Additionally, we

present numerical studies which confirm that we can achieve optimal accuracy of O(hk+1) in L2

norm and improve the LDG solution from O(hk+1) to O(h2k+1) with the accuracy enhancement

post-processing technique.


