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Abstract

An adaptive numerical scheme is developed for the propagation of an interface in a

velocity field based on the fast interface tracking method proposed in [2]. A multiresolution

stategy to represent the interface instead of point values, allows local grid refinement while

controlling the approximation error on the interface. For time integration, we use an

explicit Runge-Kutta scheme of second-order with a multiscale time step, which takes

longer time steps for finer spatial scales. The implementation of the algorithm uses a

dynamic tree data structure to represent data in the computer memory. We briefly review

first the main algorithm, describe the essential data structures, highlight the adaptive

scheme, and illustrate the computational efficiency by some numerical examples.
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1. Introduction

Tracking the evolution of interfaces or fronts is important in many application, for instance

wave propagation, multiphase flow, crystal growth, melting, epitaxial growth and flame prop-

agation. The interface in these cases is a manifold of co-dimension one which moves according

to some physical law that depends on the shape and location of the interface. We suppose for

convenience that it can be parameterized, so that for a fixed time t, the interface is described

by the function x(t, s) : R+ × R
q → R

d, with the parameterization s ∈ Ω ⊂ R
q and q = d− 1.

In this paper we consider the simplified case when the interface is moving in a time-varying

velocity field that does not depend on the front itself. Then x(t, s) satisfies the parameterized

ordinary differential equation (ODE)

∂x(t, s)

∂t
= F (t,x(t, s)), x(0, s) = γ(s), s ∈ Ω, (1.1)

where F (t,x) : R+ × R
d → R

d is a given function representing the velocity field and γ(s) :

R
q → R

d is the initial interface. We will mostly treat curves in two dimensions, d = 2,
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q = 1, but also discuss extensions to higher dimensions d = 3, q = 2 and co-dimensions

d = 3, q = 1. Applications could include the tracking of physically motivated interfaces, like

wavefronts in high frequency wave propagation problems, or “artificial” fronts of propagation

paths parameterized by initial data, where a problem has the structure (1.1) even though the

front has no direct physical interpretation. This could be, for instance, iso-distance curves on a

surface (front of geodesics), fiber tract bundles in brain imaging or the method of characteristics

for the solution graph of hyperbolic PDEs. In many of these problems it is better to numerically

consider a front rather than a set of individual paths, since the connectivity between paths is

then maintained, which for example simplifies interpolation between them. Numerical methods

for this problem include the Lagrangian front tracking method [4]. There are also Eulerian

approaches like the level set method [5] and segment projection [6]. For flow problems we

should also mention the marker-and-cell (MAC) [7] and volume of fluid (VOF) [8] methods.

We focus here on front tracking, in which the interface is described by a set of marker

points that are connected in a known topology. In one dimension one would approximate

xj(t) ≈ x(t, sj) and use a numerical method for ODEs to solve

dxj(t)

dt
= F (t,xj(t)), xj(0) = γ(sj), (1.2)

where s0 < s1 < . . . < sN is a discretization of Ω. For surfaces in three dimensions, the

markers on the interface are typically held together in a triangulation. Propagating one marker

numerically with a time step length ∆t to a fixed time costs O(1/∆t) operations. Hence,

if the interface is represented by N points the cost of standard front tracking is O(N/∆t).

In [1–3], wavelet vectors were used to describe the interface, which correspond to the details

of the interface on different scale levels. It was shown that the time derivatives of the wavelet

vectors, just as the wavelet vectors themselves, decay exponentially with level of detail. By

taking multiscale time steps, i.e. longer time steps for the fine scales than for the coarse scales,

the computational cost is reduced to only O(logN/∆t) or even O(1/∆t) without affecting

the overall accuracy. We should emphasize that this is different from standard wavelet based

adaptive schemes where shorter time steps are often used for the fine details, which is the

opposite of the method in [2]. With such strategy the cost will be reduced, but it will only

be the constant in the complexity estimate that is improved; the complexity itself remains the

same order. The reason is that there are comparatively few coarse scale wavelet vectors, where

efficiency improvement is achieved, and many fine scale wavelet vectors, where there is little

gain.

Adaptivity is usually an important feature of front tracking algorithms. Since the length

or area of the interface can grow quickly and the number of marker points used initially may

not be enough to resolve it, an adaptive mechanism which adds and removes marker points

as the resolution of the interface changes becomes necessary. For multiresolution methods, an

advantage to define adaptive techniques is an efficient data representation with an accurate es-

timation of the local approximation error. Based on the details, or wavelet coefficients, between

two consecutive grid-refinement levels, multiresolution methods provide a rigorous regularity

analysis [14], while for adaptive mesh refinement methods rigorous error estimators are quite

difficult to be derived. In the past, adaptive wavelet-based multiresolution methods have been

introduced to improve the computational efficiency and to reduce the memory requirement of

the algorithms, e.g., [9–13]. According to error estimates from different resolution levels, nu-

merical schemes have been developed for adjusting grid resolution locally and dynamically. To

obtain additional speed-up, space-time adaptive methods [15] are introduced, where the size of


