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Abstract

In this paper, we apply Hirota’s discretisation to a three-dimensional integrable Lotka-

Volterra system. By analyzing the three-dimensional modified equation of the resulting

numerical method, we show that it is volume-preserving, and has two independent first

integrals. Moreover, it can be formally reduced to a system in one dimension via a volume-

preserving transformation. If the given initial value is located in the positive octant, we

prove that the numerical solution is confined to a one-dimensional connected and compact

space which is diffeomorphic to a circle.
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1. Introduction

Integrable systems play an important role in applied fields like classical mechanics, fluid

dynamics and quantum physics, revealing various rigid phenomena such as the quasi-periodic

motion of celestial bodies, solitons in shallow water waves, etc. Many physical systems can be

taken as perturbations of integrable systems. Generally speaking, a system is integrable if it

can be solved by quadrature. In classical mechanics, the best known integrability is complete

integrability, which was proposed by Liouville in the 19th century based on the notion of first

integrals (conserved quantities). A Hamiltonian system is said to be integrable in Liouville’s

sense if it has sufficiently many independent first integrals in involution. This notion of in-

tegrability is applicable to systems of PDEs and also to discrete systems such as systems on
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lattices. Compared with non-integrable systems, integrable systems have much more specific

properties, and show regular motions and more predictable long-term behavior. For example,

the flow of a completely integrable Hamiltonian system turns out to be linear flows on invariant

tori in suitable coordinates. Although some integrable systems can be solved analytically by

the inverse scattering transform or inverse spectral methods etc., most of them could not be

treated successfully in this way. Therefore, in the study of integrable systems solving the system

numerically provides an alternative approach.

Geometric numerical integration is a class of numerical methods in the spirit of preserving

the intrinsic properties of the system [10]. This idea has been successfully applied to construct

symplectic (Poisson) methods for Hamiltonian (Poisson) systems, volume-preserving methods

for source-free systems, and integral-preserving methods for systems with given first integrals.

It has been confirmed theoretically that geometric numerical integration usually provides nu-

merical results with superior qualitative behavior compared to other methods. For integrable

Hamiltonian systems, it has been proved in [2, 20, 21] that symplectic methods can preserve

most of the invariant tori of the systems, with torus deformations of magnitude compatible

with the accuracy of the method, as long as the time-step size falls in a Cantor set of relatively

large measure near the origin of the real line. On each of the tori the numerical orbits turn

out to be quasi-periodic with diophantine frequencies, and therefore are ergodic and densely fill

the invariant torus. For completely integrable Hamiltonian systems, symplectic methods can

generate bounded numerical solutions with linear error growth near the preserved invariant tori

over exponentially long time intervals [2, 5, 21].

Our purpose of this paper is to understand integrable discretisations and to find clues for

designing proper numerical methods for integrable systems. The integrable discretizations have

been studied extensively since the mid 70s of the last century. In the construction of integrable

discretizations, the most powerful technique is the bilinear approach proposed by Hirota using

the bilinear formalism to guarantee the integrability of the discretisation [6, 7]. In [13], a

scheme following from Hirota’s discretisation was given and a significant comparison was made

with a symplectic integrator for the Lotka-Volterra system. Kahan’s method [8] preserves

the integrability of certain quadratic systems, including the three-dimensional Lotka-Volterra

system. The geometric properties of this discretisation are analyzed in [1]. We investigate

Hirota’s integrable discretisation for the pendulum problem and the Lotka-Volterra system, and

give numerical methods which preserve the phase volume and the first integrals of the system.

By means of backward error analysis [5], we interpolate the numerical solution of the integrable

systems into exact solutions of the corresponding modified differential equations (MDEs), with

the modified vector fields written in a formal power series in terms of h (time-step). Moreover,

we prove that the MDEs of the numerical method derived from Hirota’s discretisation inherit

most of the properties of the original systems. The outline of this paper is as follows. In Section

2, we give the definitions of integrable systems and integrable discretisations. In Section 3, we

analyze the numerical solutions of the method derived from Hirota’s integrable discretisation

for the two-dimensional pendulum problem. In Section 4, we introduce the Lotka-Volterra

(LV) system and analyze its geometric properties. We discretize the LV system by Hirota’s

discretisation and establish the corresponding MDEs in Section 5. As the modified vector field

of the Hirota scheme is a polynomial for the LV system, it is shown that the MDEs can be

calculated by a recurrence formula in terms of the coefficients of the polynomial. Section 6 is

devoted to reformulating the MDEs by using its geometric properties. Some related analyses

are also presented in this section. We end this paper with concluding remarks.


