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Abstract

Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations

relax the divergence constraint. The price to pay is that a priori estimates for the ve-

locity error become pressure-dependent, while divergence-free mixed finite elements de-

liver pressure-independent estimates. A recently introduced new variational crime using

lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modi-

fied Crouzeix-Raviart element, obeying an optimal pressure-independent discrete H1 ve-

locity estimate. Refining this approach, a more sophisticated variational crime employing

the lowest-order BDM element is proposed, which also allows proving an optimal pressure-

independent L2 velocity error. Numerical examples confirm the analysis and demonstrate

the improved robustness in the Navier-Stokes case.
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1. Introduction

The success of classical mixed finite elements for the incompressible Navier-Stokes equations

relies heavily on the relaxation of the divergence constraint (mass conservation), enabling the

construction of large classes of inf-sup stable finite element pairs for the approximation of

velocity and pressure [2]. Unfortunately, this relaxation is not for free. In the simplest case,

the incompressible Stokes equations

−ν∆u+∇p = f , ∇ · u = 0, (1.1)

the classical a priori error estimate for the velocity error [2,10] reads (for homogeneous Dirichlet

boundary conditions)

‖u− uh‖1,h ≤ C1 inf
w∈Xh

‖u−wh‖1,h +
C2

ν
inf

qh∈Qh

‖p− qh‖0. (1.2)
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Divergence-free mixed finite element methods like the Scott-Vogelius finite element method

deliver the pressure-independent and therefore significantly more robust estimate [3, 10]

‖u− uh‖1,h ≤ C3 inf
wh∈Xh

‖u−wh‖1,h. (1.3)

In many physical situations, where the pressure is comparably small w.r.t. the velocity or

approximable by low-order polynomials, the appearance of the pressure in the estimate (1.2)

is indeed negligible. In general situations, however, mixed methods suffer from so-called poor

mass conservation, which just means large velocity errors due to the pressure-dependent error

term C2/ν infqh∈Qh
‖p− qh‖0. Note, that for conforming mixed finite element methods like the

Taylor–Hood finite element method poor mass conservation is accompanied by large divergence

errors [9]. The easiest example, where mixed methods reveal their lack of robustness, is the

no-flow example [6,8,12], where one prescribes f = ∇φ as the forcing in (1.1). For homogeneous

Dirichlet boundary conditions, (u, p) = (0, φ) uniquely solves (1.1). Obviously, in this example

the pressure p = φ is not small compared to the velocity u = 0. According to (1.3), divergence-

free methods, deliver indeed a discrete velocity uh = 0, while mixed methods with a relaxed

divergence constraint have a velocity error, which can be arbitrarily large, only dependent on φ,

ν and the applied mixed method. Since the continuous velocity u = 0 lies in the approximation

space of the discrete method, mixed methods indeed suffer from a stability problem.

The traditional notion poor mass conservation is derived from conforming mixed methods

like the Taylor-Hood element, where it is accompanied by large divergence errors. This numeri-

cal instability has been observed by several authors in the past. In [6] the no-flow example was

investigated for the first time, seemingly. In [8] a numerical Helmholtz decomposition of the for-

cing f in (1.1) was applied, in order to get around with the irrotational part of f . The standard

approach for stabilizing poor mass conservation is the so-called grad-div stabilization [7,15,16],

which penalizes divergence errors in an L2 sense. Unfortunately, it can be shown that even

in the simplest case of the incompressible Stokes equations with an optimal choice of the sta-

bilization parameter, the approach is not completely robust w.r.t. small kinematic viscosities

ν [11]. More in the spirit of [8], recently in [14] a new approach has been proposed, in order

to avoid poor mass conservation completely. The approach is based on the observation that

the proper source of the numerical instability is a poor momentum balance, where irrotational

and divergence-free forces interact in a non-physical manner. Due to their L2-orthogonality,

divergence-free and irrotational forces are balanced separately in the continuous equations. But

due to the relaxation of the divergence constraint in mixed methods, this separation fails in

mixed methods, in general.

In [14] it is shown how to reestablish L2-orthogonality between discretely divergence-free

and irrotational vector fields modifying the nonconforming Crouzeix-Raviart element [5] by a

variational crime. Here, a velocity reconstruction operator maps discretely divergence-free test

functions onto divergence-free lowest-order Raviart-Thomas functions [17] in the right hand side

of the incompressible Stokes equations. Replacing the test functions by these reconstructions

introduces an additional consistency error, but improves the robustness of the Crouzeix-Raviart

element, since one can prove the pressure-independent, a priori discrete H1 velocity error esti-

mate (1.3) as done in [14]. Unfortunately, in [14] the author did not succeed in proving also an

optimal a priori L2 error estimate for the velocity, although numerical experiments show that

such an estimate probably holds. The proof of an optimal L2 velocity error is non-trivial, since

divergence-free lowest-order Raviart-Thomas elements are piecewise constant, only, and the va-

riational crime committed is similar to the replacement of an exact integration by a numerical


