
Journal of Computational Mathematics

Vol.33, No.2, 2015, 179–190.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1411-m4519

A DIRECT SEARCH FRAME-BASED ADAPTIVE
BARZILAI-BORWEIN METHOD*

Xiaowei Fang

College of Sciences,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;

Department of Mathematics, Huzhou University, Huzhou 313000, China

Email: fangxiaowei@163.com.

Qin Ni

College of Sciences,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Email: niqfs@nuaa.edu.cn

Abstract

This paper proposes a direct search frame-based adaptive Barzilai-Borwein method

for unconstrained minimization. The method is based on the framework of frame-based

algorithms proposed by Coope and Price, but we use the strategy of ABB method and the

rotational minimal positive basis to reduce the computation work at each iteration. Under

some mild assumptions, the convergence of this approach will be established. Through five

hundreds and twenty numerical tests using the CUTEr test problem library, we show that

the proposed method is promising.
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1. Introduction

We consider the unconstrained optimization problem

min f(x), x ∈ R
n,

where the function f : R
n → R is assumed to be continuously differentiable on R

n and

the derivative information is unavailable or unreliable. Direct search methods are subset of

derivative-free methods, which are the most important and challenging areas in computational

science and engineering.

In the 1950s, Box and Wilson [5] introduced direct search method related to coordinate

search, while Hooke and Jeeves [10] first used the term of direct search method. In the 1990s,

Torczon [18, 19] established the convergence theory firstly, which triggered the interest of the

numerical optimization community. According to the work of Torczon, et al. [2] proposed a

general framework for direct search method. In particular, some classical and modern direct

search methods were introduced by Kolda, et al. [14].

In the 2000s, Coope and Price [6,7] study a class of direct search unconstrained optimization

algorithms employing fragments of grids called frames, and they prove convergence under some

mild conditions. In 2004, Coope and Price [8] presented a direct search frame-based conjugate

gradients algorithm (MAPRP for short). The algorithm performs finite direct search conjugate
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gradient steps, and then resets. At each reset, the algorithm get the estimate of the first and

second gradients according to the fixed maximal positive basis, then obtain next search direction

by applying the modified PRP formula. Finally, a parabolic lines search is designed to locate

a line local minimizer. Numerical results show that the algorithm is effective. The application

of Coope-Price’s direct search framework could be seen in [15], which employed Coope-Price’s

framework and recently developed descent conjugate gradient methods.

In 1988, Barzilai and Borwein [11] proposed BB method, which used the negative gradient

direction as search direction and calculated the step length according to the secant equation.

Two different secant equation deduced the large step length αLBB and the small length αSBB.

BB method achieved better performance and cheaper computation than the steepest descent

method in numerical experiments. Because of the simplicity and efficiency, BB method triggered

a lot of research on the gradient method in recent decades, see, e.g. [3, 20, 21]. And it seems

that up to now the good method is the ABB method, which is proposed by Zhou, Gao and

Dai [3]. At every iteration, ABB method choose a large step size or a small step size adaptively.

Extensive numerical experiments indicate that ABB method surpass the PRP method for many

unconstrained optimization problems.

Motivated by the efficiency of the ABB method, we propose a new direct search method,

which combines the frame-based strategies and the ABB method. Because the ABB method

only needs the first gradient information, our method employs the minimal positive basis. In

each iteration, the minimal positive basis just need to compute the n+1 function value, while the

maximal positive basis require evaluate the 2n function value. So the computation work of the

new direct search method is about half of the MAPRP for approximate gradient. In addition,

benefit from the characteristics of ABB method, we only require calculate step length by αLBB

and αSBB , without the need for lines search. Further more, we rotate the minimal positive

basis according to the local topography of objective function, which make our method more

effective in practice. The convergence is proved under some mild conditions. Some numerical

results show that our direct search method is promising.

This paper is organized as follows. In Section 2, we present some basic notions for frame,

and describe our direct search method. In Section 3, we prove the convergence of the proposed

method. In Section 4, numerical results show the efficiency of method derived in this paper

compared to MAPRP [8] and Nelder-Mead [1]. Concluding remarks are given in Section 5. The

default norm used in this paper is Euclidean.

2. The New Direct Search Method

In order to introduce our method, we give some concepts about positive basis, which can

be found in [1].

Definition 2.1. A positive span of a set of vectors {v1, · · · , vs}in R
n is the convex cone

{
v = a1v1 + · · ·+ asvs, v ∈ R

n, ai ≥ 0, i = 1, · · · , s
}
.

A positive spanning set in R
n is a set of vectors whose positive span is R

n.

Definition 2.2. A positive basis V in R
n is a set of vectors with the following two properties:

• (i) every vector in R
n is a linear combination of the members of V, where all coefficients

of the linear combination are non-negative; and


