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Abstract

In this paper, we discuss the mixed discontinuous Galerkin (DG) finite element ap-

proximation to linear parabolic optimal control problems. For the state variables and

the co-state variables, the discontinuous finite element method is used for the time dis-

cretization and the Raviart-Thomas mixed finite element method is used for the space

discretization. We do not discretize the space of admissible control but implicitly utilize

the relation between co-state and control for the discretization of the control. We de-

rive a priori error estimates for the lowest order mixed DG finite element approximation.

Moveover, for the element of arbitrary order in space and time, we derive a posteriori

L2(0, T ;L2(Ω)) error estimates for the scalar functions, assuming that only the underlying

mesh is static. Finally, we present an example to confirm the theoretical result on a priori

error estimates.
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1. Introduction

It is well known that finite element approximation of the optimal control problems has

been an important and hot topic in engineering design, and has been extensively studied, see,

e.g., [13, 14, 19, 23, 30]. For the optimal control problems governed by elliptic or parabolic

state equations, a priori error estimates of finite element approximations were studied in, e.g.,

[1,12,18,22,24,25,29]. There also exist lots of works concentrating on the adaptivity of various

optimal control problems, see, e.g., [12, 22–25].

In many control problems, the objective functional contains the gradient of the state vari-

ables. For example, in the flow control problem, the gradient stands for Dracy velocity and

it is an important physics variable, or, in the temperature control problem, large temperature

gradients during cooling or heating may lead to its destruction. Thus, the accuracy of the

gradient is important in the numerical approximation of the state equations. In the finite ele-

ment community, mixed finite element methods should be used for discretization of the state
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equations in such cases, since both the scalar variable and its flux variable can be approxi-

mated in the same accuracy by using mixed finite element methods. In computational optimal

control, mixed finite element methods are not as widely used as in engineering simulations.

Recently, Chen [4] studied a priori error estimates and superconvergence of RT0 mixed finite

element methods for elliptic optimal control problems, and used the RT projection operator

and the superconvergence properties of mixed finite element methods for elliptic problems to

derive the superconvergence properties of the control, the state and the co-state. However, the

convergence order is h3/2 since the analysis was restricted by the low regularity of the control.

Furthermore, using the postprocessing technique, the author derived the superconvergence of

all variables. In [3], Chen used the postprocessing projection operator, which was defined by

Meyer and Rösch [26], to prove a quadratic superconvergence result of the control with mixed

finite element methods, while Chen and Liu [7] considered a posteriori error estimates for linear

elliptic optimal control problems by RT mixed finite element methods. In [5, 6], the authors

considered error estimates and superconvergence of RT mixed finite element methods for op-

timal control problems governed by semilinear elliptic equations. In those paper, L∞-error

estimates and H−1-error estimates are derived, respectively. For a priori error error estimates

and a posteriori error estimates of mixed finite element methods for parabolic optimal control

problems, see, e.g., [8, 33].

In recent years, the discontinuous Galerkin (DG) discretization has been proved useful in

computing time-dependent convection and diffusion equations; see, e.g., [10,11] for the DG time-

stepping method where only time discretization is discontinuous. It will be simply referred as to

the DG method in this paper, although we are aware that there exist several DG discretization

schemes in the literature. Furthermore this method has been found useful in computing optimal

control of parabolic equations; see, e.g., [27, 28]. However, there is a lack of error analysis for

the DG approximation combined with mixed finite element approximation for linear parabolic

optimal control problems.

We consider the following linear-quadratic optimal control problems:

min
u∈K⊂X

{

1

2

∫ T

0

(

‖p− pd‖
2
0,Ω + ‖y − yd‖

2
0,Ω + ‖u‖20,Ω

)

dt

}

(1.1)

subject to the state equation

yt + divp = f + u, x ∈ Ω, t ∈ I, (1.2)

p = −A∇y, x ∈ Ω, t ∈ I, (1.3)

y = 0, x ∈ ∂Ω, t ∈ I, (1.4)

y(0) = y0(x), x ∈ Ω, (1.5)

where Ω is a convex polygon domain in R
2 and I = [0, T ]. We assume that f, yd ∈ L2(I;L2(Ω)),

pd ∈ L2(I; (L2(Ω))2) and y0 ∈ H1
0 (Ω). Moreover, we assume that the coefficient matrix A(x) =

(aij(x))2×2 ∈ W 1,∞(Ω̄;R2×2) is a symmetric positive definite matrix. K ⊂ X = L2(I;L2(Ω))

is a set defined by

K =

{

u ∈ X :

∫ T

0

∫

Ω

u dxdt ≥ 0

}

.

The purpose of this work is to investigate the mixed DG finite element methods for linear

parabolic optimal control problems. Firstly, we use the piecewise constant functions to dis-

cretize the time variable t and use the lowest order Raviart-Thomas mixed finite element to


