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Abstract

In this paper, we apply arbitrary Riemann solvers, which may not satisfy the Maire’s

requirement, to the Maire’s node-based Lagrangian scheme developed in [P. H. Maire et

al., SIAM J. Sci. Comput, 29 (2007), 1781-1824]. In particular, we apply the so-called

Multi-Fluid Channel on Averaged Volume (MFCAV) Riemann solver and a Riemann solver

that adaptively combines the MFCAV solver with other more dissipative Riemann solvers

to the Maire’s scheme. It is noted that neither of the two solvers satisfies the Maire’s

requirement. Numerical experiments are presented to demonstrate that the application of

the two Riemann solvers is successful.

Mathematics subject classification: 65N06, 65B99.

Key words: Maire’s node-based Lagrangian scheme, Riemann solvers, Riemann invariants,

weighted least squares procedure.

1. Introduction

Due to the significant advantages of capturing contact discontinuities and material interfaces

sharply and automatically, Lagrangian methods have been rapidly developed in the past decades

and are now widely used in many fields for compressible multi-material flow simulations, such as

inertial confinement fusion (ICF) and astrophysics, see, e.g., [1, 8, 15, 18, 20], and the references

therein.

Recently, P. H. Maire and his co-workers developed a node-based two-dimensional cell-

centered Lagrangian scheme, see, e.g., [9-12]. The feature that distinguishes the Maire’s scheme

from other cell-centered Lagrangian schemes is that the conservations of momentum and total

energy are satisfied at each node rather than in each cell, and in this way the node velocity

is computed directly from the cell-centered quantities. In doing this, Riemann solvers located

at the nodes are used across each cell edge emitting from the node, where the lacked degree

of freedoms is supplied by introducing four pressures on each cell edge, two for each node on

each side of each edge. In this way, the interface fluxes and the node velocity are computed

in a compatible fashion, the geometric conservation law is thus satisfied, and the problems

of artificial grid motion [6] and numerical sensitivity to the cell aspect ratio [5] that bother
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the cell-centered Lagrangian schemes are eased. Since then, a series of contributions to the

development of the method have been presented and the method has been extended to the

second-order scheme, Euler and ALE methods, solid dynamics, elastic-plastic flows, and so on,

see e.g., [4, 10, 13, 17, 18].

In the Maire’s scheme, the Riemann solvers to be used at nodes have to satisfy certain

requirement, whose particular form is the acoustic Riemann solver, see (4.7) in [12] or (3.2)

in §3 of this paper. We call it the Maire’s requirement on the Riemann solvers in this paper.

We believe, and our numerical experiment also confirms, see the discussion in §4, that this

requirement is crucial for the feasibility of the scheme, with which the node velocity is computed

from the normal velocities on the cell edges by solving a 2×2 linear system with positive definite

coefficient matrix, see (4.13)-(4.14) in [12] or the discussion in §2 and §3 of this paper. We notice

that this requirement on Riemann solvers has not been lifted in the later development of the

method and the Riemann solvers used there are still restricted by this requirement, see the

above mentioned papers. However, this requirement rejects many popularly used Riemann

solvers in CFD.

The Multi-Fluid Channel on Averaged Volume (MFCAV) Riemann solver was proposed by

Shui in 1980’s [8], and some of its ideas can be traced back to von Neumann and Richtmyer

in 1940-50’s [22]. The solver is simple and can be easily applied to any fluids without request

of information on the EOS’s. Also it is much less dissipative, resulting sharper shock profiles

and rarefaction corners in numerical simulations. The main drawback of the MFCAV Riemann

solver is that it may produce spurious oscillations because of its less dissipation. To eliminate

the spurious oscillations, the solver is often combined with other more dissipative Riemann

solvers to form an adaptive Riemann solver(ADRS) in practical use. Because of its efficiency,

the MFCAV Riemann solver and its ADRS’s are still used in many application codes in Chinese

CFD community, see e.g., [19, 20]. However, the MFCAV solver does not satisfy the Maire’s

requirement, neither do the ADRS’s, see the discussion in §4. Therefore, they can not be

straightforwardly applied to the Maire’s scheme in the way as described in [12].

The main contribution of this paper is to develop a way for applying arbitrary Riemann

solvers, even the solvers that do not satisfy the Maire’s requirement, to the Maire’s node-based

Lagrangian scheme. In this way the feature of the Maire’s scheme that the node velocity is

computed from the normal velocities on the edges by solving a 2×2 linear system with positive

definite coefficient matrix is preserved. This is achieved based on a re-formulation of the Maire’s

computation of the node velocity and half-pressures. In this paper, a starting one, we will only

apply the MFCAV Riemann solver and an ADRS of it to the Maire’s scheme.

We test the MFCAV Riemann solver because of the following two reasons: First, the MFCAV

solver is still in our practical use because of its ability of handling discontinuities with great

density and pressure jumps sharply. Second, the MFCAV solver is often used as a building block

to construct more sophisticated and better Riemann solvers. Actually, the ADRS Riemann

solver, see §4 for its description, is such an example and the numerical examples in §5 shows

that it works better than the original acoustic Riemann solver in the scheme. For this reason,

we need first to successfully apply the MFCAV solver to the Maire’s scheme. In our future

research, we are going to apply more different Riemann solvers, some of which may use the

MFCAV solver as a building block, to the scheme. In this paper, we consider only the first-

order semi-discretization as in [12], higher-order extensions will be our future researches. The

rest of this paper is organized as follows.

In §2, we briefly recall the Maire’s conservative cell-centered and node-based Lagrangian


